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In the present study, we tested the hypotheses that: a) there are individual differences 

in secondary students’ conceptual and procedural fraction knowledge, and b) these 

differences are predicted by students’ approach (deep vs. surface) to mathematics 

learning. We used two instruments developed and evaluated for the purposes of the 

study which were administered to 463 students at seventh and ninth grade. We found 

four clusters of students corresponding to different ways of combining conceptual and 

procedural knowledge of fractions. Students’ approach to mathematics learning 

predicted membership to some, but not all clusters.  

THEORETICAL BACKROUND 

Procedural knowledge is commonly defined as the knowledge of algorithmic 

procedures, whereas conceptual knowledge as the knowledge of concepts and 

principles pertaining to a certain domain (Rittle-Johnson & Schneider, 2015). This 

distinction has been criticized (e.g., Star & Stylianides, 2013), a main issue of concern 

being whether it is possible for the two types of knowledge be separated, given that 

they are typically found to be highly correlated. Nevertheless, there are indications 

that the two types of knowledge can be separated both theοretically and empirically 

(Lenz & Wittman, 2021), and this distinction remains useful in the area of research on 

mathematics learning (Vamvakoussi, Bempeni, Poulopoulou, & Tsiplaki, 2019). 

Assuming that conceptual and procedural knowledge are distinct types of knowledge, 

the order of acquisition and their relation have long been an issue of interest. The 

currently predominant theory, namely the iterative model (Rittle-Johnson, Siegler, & 

Alibali, 2001), came to bridge the gap between two different accounts according to 

which one type of knowledge precedes the other (procedures-first and concept-first 

theories). The iterative model assumes that either type of knowledge can trigger the 

learning process, depending on the child’s prior experience with the domain in 

question; and that, from then on, the links between the two types of knowledge are bi-

directional and continuous, with increases in one kind of knowledge leading to gains 

in the other type of knowledge.  The iterative model explains many empirical findings, 

notably the well-established one that the two types of knowledge are positively 

correlated. However, such correlations found at group level do not accurately depict 
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what happens at the individual level (Vamvakoussi, et al., 2019). Indeed, there is 

evidence that there are individual differences in the ways students combine the two 

types of knowledge. Hallett and colleagues (2010; 2012) investigated such individual 

differences in the area of fraction learning and identified different groups of students 

(Grades 5-8) with the one type of knowledge, conceptual or procedural, to be more 

developed than expected, given the other type. Similar individual differences in 

fraction knowledge have been found for older students, namely 9th graders (Bempeni, 

Poulopoulou, Tsiplaki, & Vamvakoussi, 2018; Lenz & Wittman, 2021), and they may 

be even extreme (Bempeni & Vamvakoussi, 2015). 

With the aim of explaining how these individual differences regarding knowledge in 

the domain of fractions, or other domains, arise, several hypotheses have been tested 

looking at various factors such as the amount of the prior knowledge in a domain 

(Schneider, Rittle-Johnson, & Star, 2011); differences in cognitive profiles, measured 

as general conceptual and procedural ability (Gilmore & Bryant, 2006; Hallett et al., 

2012) or general cognitive abilities (Lenz & Wittman, 2021); and differences in 

educational experiences, measured as attendance in different schools or as school 

grade (Canobi, 2004; Hallett et al., 2012). No or limited support for these hypotheses 

has been found. 

We have formulated the hypothesis that a possible source of individual differences in 

conceptual and procedural fraction knowledge is the individual’s approach to 

mathematics learning.  In the literature there is an overarching distinction between the 

deep approach to learning, associated with the individual’s intention to understand; 

and the surface approach, associated with the individual’s intention to reproduce. 

There are several ways of characterizing each approach, mainly adapted to tertiary 

education (Entwistle & McCune, 2004). In a qualitative study (Bempeni & 

Vamvakoussi, 2015) we adopted a model developed by Stathopoulou and Vosniadou 

(2007) and tested with secondary students. This model differentiates between the deep 

and the surface approach to learning along three axes, namely goals (personal making 

of meaning vs. performance goals); study strategies (e.g., searching for connections vs 

rote learning); and awareness of understanding (high vs. low). We interviewed in 

depth three 9th graders (A, B, C) who differed with respect to their fraction 

knowledge: A had strong conceptual as well as procedural knowledge; B had strong 

conceptual, but extremely weak procedural knowledge; and C had strong procedural, 

but extremely weak conceptual knowledge. We found indicators of the deep approach 

to mathematics learning for A and B, and indicators of the surface approach for C. We 

also traced differences among the students with respect to particular aspects of 

motivation (e.g., enjoying vs. avoiding intellectual challenges in mathematics). In a 

second qualitative study, we further investigated the features of the deep approach to 

mathematics learning by studying exceptionally competent students in mathematics 

(Bempeni, Kaldrimidou, & Vamvakoussi, 2016).  

These two qualitative studies, informant the development of an instrument assessing 

secondary students’ approach to mathematics learning (deep vs. surface) along four 
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axes, namely goals, study strategies, motivation, and self-regulatory behaviors (e.g., 

monitoring of understanding, regulation of study habits). 

In the present study, we examined the hypotheses that there are individual differences 

in conceptual and procedural knowledge of fractions (hereafter, CKn and PKn) that 

become less salient but remain present up to Grade 9; and that these differences are 

predicted by students’ approach to mathematics learning (surface vs. deep). 

METHOD 

Participants 

The study had two phases. The participants in the first phase were 510 students at 

Grades 7 and 9, of whom 463 participated also in the second phase (262 ninth graders 

and 201 seventh graders). The participants came from seven Greek secondary schools. 

Materials 

Students’ CKn and PKn was measured by an instrument that has been evaluated in a 

previous study with respect to reliability and validity (Bempeni et al., 2018). The 

instrument comprised 12 procedural tasks (e.g.: fraction operations, simplification of a 

complex fraction) and 14 conceptual tasks such as fraction representation, 

comparison, estimating the outcome of fraction operations (see Bempeni et al., 2018; 

Vamvakoussi et al., 2019 for a more detailed description of the instrument). 

The new instrument assessing student’s approach to mathematics learning comprised 

of 28 statements and 6 scenarios in which two hypothetical students presented two 

different views on an issue. Half of the statements were consistent with the deep 

approach to learning, and the other half with the superficial approach to learning. The 

students were asked to express the degree of their accordance in a scale of 1-4 

(1=Totally Disagree, 2=Disagree, 3=Agree, 4=Totally Agree). The neutral choice 

“Neither Agree or Disagree” was not included because it has been proved problematic 

in similar studies (e.g.: Entwistle et al., 2015). Examples of such statements were the 

following: “It’s a waste of time to study for something that is not required for the 

exams”, “If I do not remember the particular strategy to solve a problem, it is 

meaningless to try to solve it”, “I prefer to solve new problems, than practicing with 

the ones I already know how to solve”. 

Procedure 

The students had fifty minutes to complete the first questionnaire with the fraction 

tasks, which was enough for them. The questionnaire for the approach to mathematics 

studying and learning was administered three weeks later. No time limit was imposed, 

but the students needed at about half hour to complete it.  

DATA ANALYSIS – RESULTS 

1st Phase of the study 

The data of the first phase of the study were classified using the proposed hierarchical 

method of cluster analysis, and taking as variables the standardized residuals in the 
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two types of tasks (Bempeni et al., 2018; Hallett et al., 2010, 2012). By following this 

method, we examined the relative difference between the two variables. Using a series 

of evaluation measures in R programming language (R project for statistical 

computing), we determined that the optimal number of clusters was 4. 

In Figure 1, we present the average performance in conceptual and procedural 

knowledge by cluster. In a little more detail, the first cluster (“Stronger than expected 

in CKn and PKn”, N=163, 32%, 10% 7th Grade) performed better than expected in 

both types of tasks. The second cluster performed better than expected in procedural 

tasks based on their CKn (“Stronger than expected in PKn”, N=207, 40.6%, 28.6% 

7th Grade). The third cluster performed better than expected in conceptual tasks based 

on their PKn (“Stronger than expected in CKn”, N=75, 14.7%, 6.9% 7th Grade). 

Finally, the fourth cluster (“Weaker than expected in CKn and PKn”, N=65, 12.7%, 

8.4% 7th Grade), comprised of students with low performance in both measures. It is 

worth noting that despite the fact that the overall score of the cluster “Stronger than 

expected in PKn” was higher than the one of the cluster “Stronger than expected in 

CKn”, the CKn score was comparatively lower. Moreover, the average performance 

in PKn and CKn was better at 9th grade (69.5% and 49.2% respectively) than at 7th 

grade (66.9% and 32.8%). 

  

Figure 1: Average performance in CKn and PKn by cluster 
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2nd Phase of the study 

In the second questionnaire, for the items consistent with the deep approach to 

learning, each choice (1-4) was taken to reflect the degree (low to high) of consistency 

of the response with the deep approach to learning. For the items consistent with the 

surface approach to learning the scores were ranked in the inverse order. The total 

score (hereafter, LA score) was calculated as the sum of the scores of all the items. 

For the analysis of the data, we used R programming language. 

For the evaluation of the second questionnaire, we conducted a small pilot study. The 

participants of the pilot study were 120 seventh and ninth graders. In order to assess 

the internal consistency of the instrument, we calculated Cronbach’s alpha. The value 

of Cronbach’s alpha for two of the items had negative correlation with the scale, and 

as a result, these questions were excluded from our instrument. Finally, the value of 

Cronbach’s alpha for the scale was α=0.821. We also assessed the external 

consistency of the instrument over a period of 15 days with a test-retest method. 

Forty-one students completed the questionnaire for a second time. We calculated the 

value of intra-class correlation coefficient for each item separately. Five of the items 

displayed intra-class correlation below 0.4 and thus we decided to exclude them from 

the final version of the instrument. 

Clusters N Mean SD Median Range 

1 Stronger than expected 

in CKn and PKn 

158 2.987 0.414 3.037 (1.852 - 3.704) 

2 Stronger than expected 

in PKn 

194 2.830 0.397 2.923 (1.630 - 3.593) 

3 Stronger than expected 

in CKn  

52 2.636 0.275 2.633 (2.222 - 3.370) 

4 Weaker than expected in 

CKn and PKn 

59 2.593 0.367 2.630 (1.481 - 3.481) 

Table 1: Mean LA score by cluster 

The test of independence showed that there is a statistically significant correlation 

between cluster and approach to mathematics studying and learning (χ2=60.396, df=3, 

p-value<0.0001). As illustrated in the Table 1, the cluster “Stronger than expected in 

CKn and PKn” had the highest score with respect to the approach to mathematics 

learning, followed by the group “Stronger than expected in PKn”. The group 

“Weaker than expected in CKn and PKn” had the lowest score. 

In order to test the hypothesis that learning approach and school grade are predictors 

of the level of students’ CKn and PKn, we conducted multinomial logistic regression 

(Table 2). The results showed that both learning approach and grade can predict 

cluster membership. With the cluster “Weaker than expected in CKn and PKn” as 

base level, for every unit that the individual’ s LA score increases, it was 21.98 more 
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likely for the student to belong to the cluster “Stronger than expected in CKn and 

PKn” and 4.77 more likely to belong to the cluster “Stronger than expected in PKn”. 

Using the same base level, a ninth grader is 8.35 more likely to belong to the group 

“Stronger than expected in CKn and PKn” than to the group “Weaker than expected 

in CKn and PKn”. 

Predictor Weaker than expected in 

CKn and PKn 

Vs. 

B OR= exp(B) p-value 

Score in mathematics 

learning approach  

Stronger than expected in 

CKn and PKn 

3.09 21.98 0.000 

 Stronger than expected in 

PKn 

1.56 4.77 0.000 

 Stronger than expected in 

CKn 

0.42 1.53 0.390 

9th Grade Stronger than expected in 

CKn and PKn 

2.12 8.35 0.000 

 Stronger than expected in 

PKn 

0.18 1.19 0.606 

 Stronger than expected in 

CKn 

0.52 1.69 0.206 

Table 2: Predictive factor testing 

CONCLUSIONS – DISCUSSION 

The results of our study confirm the hypothesis that there are individual differences in 

the way students combine CKn and PKn for fractions (Hallett et al., 2010; 2012). 

Although older students were more likely to have strong CKn as well as PKn, a 

considerable percentage of 9th graders belonged to the clusters “Stronger than 

expected in PKn” and “Stronger than expected in CKn”, indicating that individual 

differences remain present up to Grade 9. It is worth noting that the greater part of our 

sample was found in the group “Stronger than expected in PKn”, indicating that 

instruction favours mainly the development of PKn (see also Canobi, 2004). 

In our attempt to detect the possible factors that are responsible for individual 

differences in CKn and PKn, we tested the hypothesis that the approach to 

mathematics learning predicts such individual differences. The LA score predicted the 

membership in the clusters “Stronger than expected in CKn and PKn” and “Stronger 

than expected in PKn”. This result only partially supports our hypothesis, due to the 

fact that the probability for a student to belong to the cluster “Stronger than expected 

in CKn” cannot be predicted; moreover, the mean LA score for this cluster was the 

second lowest one, lower than the mean LA score of the “Stronger than expected in 
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PKn” cluster. A possible explanation is, that as a result of using residualized scores in 

the cluster analysis (Hallett et al., 2010, 2012; Bempeni et al., 2018), the “Stronger 

than expected in CKn” cluster includes students with relatively stronger CKn given 

their PKn, but not necessarily in absolute terms; and similarly, for students in the 

“Stronger than expected in PKn” cluster. A different method for clustering the 

students, differentiating between the low from the high performing students could be a 

viable solution (see Lenz & Wittman, 2021, for such a method). 

Whilst the development of the two types of knowledge is not assumed to be 

symmetrical at any given moment (Rittle-Johnson & Schneider, 2015), our results put 

a challenge to the iterative model. More specifically, given the age and educational 

experience of the participants, we would expect a more balanced development of the 

two types of knowledge which is not the case in our study.  

The learning approach to mathematics deserves to be further investigated as a source 

of individual differences in CKn and PKn. The instrument that we developed is a 

contribution of some significance per se, since, to the best of our knowledge, there is 

no similar instrument targeting secondary students. An enrichment and refinement of 

our instrument, in view of the fact that several items had to be excluded from its final 

version following its evaluation, is worth-considering. 
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