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ASPECTS OF MATHEMATICAL KNOWLEDGE FOR TEACHING: 

A QUALITATIVE STUDY 

Theodora Avgeri & Xenia Vamvakoussi 

University of Ioannina 

 
We present a qualitative study aiming at investigating secondary school teachers’ 
Mathematical Knowledge for Teaching regarding the dense ordering of rational 
numbers. Fifteen secondary math teachers were asked to evaluate the responses of 
hypothetical students, explain students’ thinking, and give feedback. The accuracy of 
the evaluation, the quality of the explanation, and the use of counterexamples were 
examined. The results showed shortcomings in various categories of Mathematical 
Knowledge for Teaching, such as Common Content Knowledge and Specialized 
Content Knowledge, Knowledge of Content and Students and Knowledge of Content 
and Teaching. 

THEORETICAL FRAMEWORK 

One of the major concerns in educational research is the knowledge required for 
teaching. Ball and her colleagues (Ball, Thames & Phelps, 2008) outlined certain 
components of Mathematical Knowledge for Teaching that have been a reference point 
for mathematics education researchers. In this paper, we adopted Ball and colleague’s 
theoretical framework and we studied aspects of the Mathematical Knowledge for 
Teaching in secondary school math teachers.  
One of the aspects of Mathematical Knowledge for Teaching that we focused on is 
Common Content Knowledge, which is knowledge about the mathematical content 
that is useful for teaching, albeit not exclusively. The second aspect of Mathematical 
Knowledge for Teaching we are interested in is Knowledge of Content and Students, in 
terms of teachers’ ability to explain students’ thinking, especially when they give 
incorrect answers. We focused on the use of counterexamples, which relates to 
Specialized Content Knowledge (i.e., knowledge which is useful exclusively for 
teaching) and Knowledge of Content and Teaching. Indeed, the appropriate selection 
and use of counterexamples in teaching is a very important, non-trivial process 
(Zaslavsky, 2010). The fundamental purpose of a counterexample is to refute a claim. 
In teaching, however, appropriate selection and use of counterexamples is required to 
make visible to students the reasons why a claim is false and to create conditions for 
generalization, beyond the particular claim; these are found to be challenging for 
teachers (Pele & Zaslavksy, 1997; Zaslavsky, 2010). 
The study presented in this paper is part of a larger one investigating secondary math 
teachers’ Mathematical Knowledge for Teaching about rational and real numbers. 
Here we focus on Mathematical Knowledge for Teaching about the dense ordering of 
rational numbers. It is amply documented that this property is difficult for students at 
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all levels of education, even for tertiary students studying mathematics. Students often 
argue that between two rational numbers there is a finite, possibly zero number of 
numbers, as it happens in the set of national numbers. Moreover, even students who 
describe the number of intermediate numbers as “infinite” often refer to a very large 
number (e.g., “a billion”, “as many as the grains of sand in the desert”) that it is finite 
(Vamvakoussi & Vosniadou, 2012).  
Our research questions were: a) Do teachers evaluate correctly students’ answers about 
the number of numbers in an interval? (Common Content Knowledge) b) Are teachers 
able to explain the students’ way of thinking? (Knowledge of Content and Students) 
and c) What are the characteristics of the feedback they give to the wrong answers? 
Specifically, for (c), we examined teachers’ selection and use of counterexamples 
(Specialized Content Knowledge, Knowledge of Content and Teaching). 

METHOD 

Participants 

The participants were 15 secondary math teachers (10 women, 5 men) with 1 to 7 years 
of teaching experience. In Greece, secondary math teachers necessarily have a degree 
in mathematics. The majority of our participants were either in the process of obtaining 
or had already obtained a master’s degree. One of them had a master’s degree in 
Mathematics Education.  
Research tool 

To explore teachers’ Mathematical Knowledge for Teaching about the dense ordering 
of rational numbers we used tasks in the form of (hypothetical) classroom scenarios, 
deemed suitable for such purposes (Biza, Nardi & Zachariades, 2007). Due to space 
limitations, in this paper we will examine only one of them in detail.  
According to this classroom scenario, a hypothetical teacher asks a class of 9th graders 
how many numbers there are between 1.1 and 1.3; three different responses (A, B, C) 
by the students are presented:  A) “One, 1.2”; B) “19: 1.11, 1.12, 1.13, 1.14, 1.15, .., 
1.19, 1.20, 1.21, .., 1.29”; and C) “They are infinite… lots of them… over a billion. 
Only a computer could find them all.” The three hypothetical responses A, B and C 
correspond to different levels of understanding of the number of intermediate numbers 
in an interval (Vamvakoussi & Vosniadou, 2012). In A, the student treats the given 
numbers as natural numbers. In B, the hypothetical student performs the first step of a 
potentially repeatable process by adding a decimal digit to the given numbers (1.10 and 
1.30) but then treats them similarly to student A. Finally, answer C corresponds to the 
interpretation of the expression “infinity numbers” as “a very large, but finite, number 
of numbers”. 
The participants were asked the following questions: a) Is any of these answers, 
correct? If so, which one? If not, which is the correct answer?, b) Can you explain each 
student’s thinking?, and  c) How would you deal with this situation, if you were the 
teacher of this class? How would you give feedback to these students?  



Avgeri, Vamvakoussi 

 

 

PME 45 – 2022 2 - 37 
 

Procedure 

Teachers participated individually in semi-structured interviews, which were 
conducted via Skype. All the interviews were recorded and transcribed.  

RESULTS 

Evaluating and explaining students’ answers 

We first examined whether the teachers evaluated correctly the three responses (A, B, 
C). Nine of the fifteen teachers correctly evaluated all three answers. While all of them 
correctly judged that answers A and B were incorrect, six teachers (T2, T3, T6, T7, 
T11, T13) considered answer C to be correct. For example: 

T7: I agree that a computer could find them all. If it were programmed by a 
mathematician, the computer would run the algorithm and find them all.  

Explanations of the student’s thinking were examined in cases where the assessment 
was correct and were categorized into 3 categories. The first category (“No 
Explanation”) included responses in which participants either explicitly said that they 
were unable to explain; or avoided giving an explanation. The second category 
(“Trivial explanation”) included all explanations that repeated the student’s answer, or 
attributed the error to general factors such as the student's background in mathematics 
(“strong”/ “weak” student), or carelessness. The following extracts present examples 
of the first (T2) and second (T1) category of explanations: 

T2: Now, how did he come up with it? I don’t know how he thought of it. 

T1: It can be due to a number of factors. This student might be weak, or careless.  

Finally, the category “Relevant Explanation” included the explanations that provided a 
substantial rationale for the hypothetical students’ thinking. For A and B, teachers who 
gave relevant explanations appeared to recognize that the students’ reasoning was 
based on natural number knowledge (see T15 in the excerpt below). For C, teachers 
who provided relevant explanations appeared to acknowledge that the hypothetical 
student, while using the term “infinity”, was actually referring to a very large, albeit 
finite, number of intermediate numbers (see T15 in the following excerpt). 

T5: Well, the first one thought that after 1.1… in the decimal part, after 1 there’s 2 and 
then 3. So, between 1.1 and 1.3 there is 1.2.  

T15: The third one says there are infinitely many, but the fact that he says there are over a 
billion, he puts a barrier, he is, like, counting them. I don’t think he 
understands what infinity is. 

Table 1 shows the frequency of each category of explanation by hypothetical answer. 
Less than half of the explanations were found in the “Relevant Explanation” category, 
with the majority of them for A. We should note that only three teachers gave relevant 
explanations for all three hypothetical answers (T4, T8, T15). In addition, 5 
participants didn’t provide relevant explanations for any of the responses that they had 
assessed correctly, including two who had assessed all three correctly (T1, T14). 
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Explanation 
Category 

Hypothetical Answers Total 

A B C 

Relevant 
Explanation 

9 4 5 18 

Trivial 
Explanation 

5 7 2 14 

No Explanation 1 4 2 7 

Total 15 15 9 39 

Table 1: Frequency of each category of explanation by hypothetical answer. 
It is also interesting to note that 5 of the teachers who gave a substantial explanation for 
A didn’t recognize that B was a similar case (Table 1). One such example is T10: 

T10: The second answer is a bit strange, it’s weird. Uh… (pause). I don’t know. I don’t 
know where this answer comes from, I really can’t imagine. 

Feedback: The use of counterexamples 

We analyzed the teachers’ feedback to the hypothetical students only for the responses 
they had (correctly) assessed to be incorrect. We note that in many cases the teachers 
addressed more than one response simultaneously. In the relevant texts, we searched 
for references to counterexamples, initially individually. We found that there were 
direct and indirect such references, so the texts were reviewed, the findings were 
compared and the (few) differences were resolved by discussion.  
In total, 14 references to counterexamples were identified. Counterexamples were 
mentioned explicitly (as specific numbers) or descriptively (e.g., “decimals with many 
decimal digits”); they were also implied via referring to the responses of other 
hypothetical students or to a modified form of the problem in which more intermediate 
numbers were considered to be visible to students (e.g., after adding one or more zeros 
to the decimal part of the given numbers). Texts containing references to 
counterexamples were first examined as to whether counterexamples are used merely 
to refute a particular claim or whether their use afforded possibilities for 
generalization. Two initial categories were created.  
The first category (“Claim Refutation”, N=4) included cases in which the teacher 
referred to one or more intermediate numbers, with the intention of refuting the claim 
that “there are no other intermediate numbers”. For example: 

T15: I would ask them, is—let’s say—1.135 between these numbers? I think that all the 
students would say “yes, this is in between”. Then I would ask, is 1.1355 
between? It is. That’s how they would understand that they were wrong.  

The second category (“Potential Generalization”, N=7) included the cases that referred 
to a method of generating counterexamples that potentially leads to the infinity of the 
intermediate numbers in an interval. However, differences were found in the adequacy 
of the description of the method, and two subcategories were formed. In all cases of the 
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first category (“Potential Generalization – Inadequate description, N= 4), teachers 
were limited to mentioning the possibility of more/fewer decimal digits in a number, 
similar to T3 in the extract below:  

T3: I would explain to them that after the decimal point, we can put infinitely many digits, 
that’s a number too. The number 1.113758239 is smaller than 1.2. 

In the second subcategory [“Potential Generalization – Adequate Description”, N=3], 
we included cases in which teachers explicitly described a generalizable, repeatable 
process of generating intermediate numbers, either in a purely numerical context (T1, 
T10), or in the context of the number line (T12). For example: 

T10: At first, I would pay attention to the first two answers (A and B). I would say to the 
students: the first step is simply to say 1.2. But then, as the other student 
said, we can take a second step and add two decimal digits, 1.12, 1.13, 1.29. 
I would say to them, if we got one decimal digit the first time and two 
decimal digits the second time, why don’t we continue to three decimal 
digits? I would then say that what I’m telling you now, we can do for 4 
decimal digits as well. So, it’s a process that we can keep doing for any 
number of decimal digits. Since we can do this for any number of digits, we 
begin to understand that there are infinitely many numbers in between. 

T12: I will tell them to pick any two numbers on the number line. I’m going to take the 
point in the middle of the line segment. So, here is a number in between. 
Then, I will pick one of the two (endpoints) and I will do the same. We can 
zoom in again and again and find infinitely many numbers. 

We note that T1 and T12 also expressed a clear intention to address the infinity of 
intermediate numbers in any interval.  
Finally, in the “Other” category (N= 3), three cases of feedback using counterexamples 
were included, which were judged, for different reasons, as inappropriate (see excerpts 
below). More specifically, T13 relied on an invalid argument, claiming that since all 
real numbers are infinitely many, there are infinitely many numbers in any interval. 
T7’s feedback had two parts. In the first, she stated that there are infinitely many 
numbers in the interval, referring to infinity as an “unending process”. In the second, 
she described vaguely the intermediate numbers as “numbers with “lots of decimal 
digits”. No obvious connection between the two parts was made; and it is unclear how 
the intermediate numbers are generated, and whether “lots of” is also used to refer to 
“infinitely many”. Finally, T14 based all the counterexamples as well as their 
generation method, on the sequence of natural numbers, referring to the first four terms 
of the corresponding sequence of decimal numbers with one decimal digit. It is not 
clear which number follows 0.9 in his sequence. Assuming that it is 1, then the 
subsequent terms are not between 0 and 1. Assuming that it is 0.10, then this sequence 
is presented with the misleading ordering of natural numbers, consistent with the 
well-known misconception that “longer decimals are larger”  

T13: Because these numbers can be placed on the real line, and because there are 
infinitely many real numbers, it is obvious that between two numbers there 
isn’t just one, two etc., there are lots of numbers, which are not easy to find. 
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Usually, in our everyday life and when we teach, we use “easier” numbers 
such as 1.13, 1.14 etc. 

T7: I would tell them that there are infinitely many numbers between 1.1 and 1.3 and we 
can’t say precisely how much “infinitely many” is, infinity means you keep 
going. Anyway, there will be numbers with lots of decimal digits that 
approach 1.3. 

T14: The answer is the same for all, so I would tell them that the numbers, as we know 
them, are infinitely many. (…). When I go from 0 to 1, there are also 
infinitely many numbers. You see, when I count 0, 1, 2, 3, 4, 5, I can 
continue to infinity. If I want to go from 0 to go to 1, there is the number 
0.1. So, I can go on, 0.2, 0.3 up to infinity, just like before. Just like I 
reached infinity the first time, I also reach infinity by 0.1, 0.2, 0.3, 0.4, there 
are infinitely many numbers up to 1. 

Finally, we would like to highlight another aspect of teachers’ feedback which we had 
not anticipated and emerged through their descriptions. As can be noticed from the 
preceding excerpts, the students are hardly taken into account. We reviewed the texts 
for indications of intention to include students in the process in a meaningful way (i.e., 
intention to ask students to explain their answers, to compare answers, to explore 
non-trivial questions, etc.). Only two teachers (T1, T6) expressed the intention to 
engage the students in the process. For example: 

T1: I would start with the second student and the rationale of the third so that we can 
come to the conclusion that no matter what interval we end up taking, we 
will always find an intermediate number (….) I generally prefer in such 
cases to ask the children to explain their peers’ mistakes. In this way we 
eventually end up with the correct answer. 

DISCUSSION  

In this paper we examined aspects of Mathematical Knowledge for Teaching (Ball et 
al., 2008) of secondary school teachers. We focused on participants’ responses to 
hypothetical students’ answers to a question about the number of intermediate numbers 
in a given interval. The first finding, which relates to Common Content Knowledge 
(Ball et al., 2008), was that only 9 out of 15 teachers evaluated correctly all three 
hypothetical responses. This is remarkable given the mathematical background οf the 
particular participants. The remaining 6 teachers agreed with the claim that “a 
computer can find all the intermediate numbers in a given interval”. This reflects a 
conception of “infinitely many” as “a very large, albeit finite number”, similar to the 
conception documented for primary and secondary school students (Vamvakoussi & 
Vosniadou, 2012). Regarding Common Content Knowledge, we should also note the 
invalid argument presented by one participant in the attempt to give feedback to the 
hypothetical students (“there are infinitely many real numbers, therefore there are 
infinitely many intermediates in the given interval”).  
Explaining the hypothetical students’ thinking (Knowledge of Content and Students; 
Ball et al., 2008) also proved challenging. A meaningful explanation, acknowledging 
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implicitly or explicitly that decimal numbers were treated by the first two hypothetical 
students like natural numbers, was provided by the majority of participants in the 
simpler case (i.e., “only 1.2 between 1.1 and 1.3”), but by fewer in a similar one (i.e., 
“only 1.11, 1.12, …1.29 between 1.1 and 1.3”). Only five teachers recognized the 
misinterpretation of the expression “infinitely many” by the third student. In the 
majority of cases, no explanation or a trivial explanation was given, attributing the 
error to factors such as carelessness, or the general mathematical background of the 
student, which is not conducive to meaningful instructional support for students. We 
note that accurate evaluations did not necessarily imply relevant explanations, which 
highlights the fact that Common Content Knowledge is distinct from Knowledge of 
Content and Students.  
Finally, in terms of feedback, we focused on the use of counterexamples, which relates 
to Specialized Content Knowledge as well as to Knowledge of Content and Teaching 
(Ball et al., 2008). The particular classroom scenario afforded the use of 
counterexamples and the participants indeed used them; they also had methods of 
producing counterexamples at their disposal. Only three teachers, however, placed the 
counterexamples in an explanatory context that could support students to understand 
the underlying method and reach the conclusion that there are infinitely many numbers 
in any interval. This is consistent with findings showing that the appropriate use of 
counterexamples is challenging for teachers (Zaslavsky, 2010).  
Finally, with only two exceptions, the teachers did not explicitly express the intention 
to engage the students in any productive activity during the feedback process. They 
typically described a situation where the teacher presents and explains the correct 
answer; and the students’ participation is minimal, if not trivial. 
The findings on feedback, although they give some (alarming) indications regarding 
the teachers’ ways of dealing with similar situations in the classroom, should be treated 
with caution. Indeed, it is possible that in real classroom settings the teachers would 
have engaged in a more meaningful interaction with students or presented more 
elaborate explanations.  
To sum up, the results of this study indicated shortcomings in the aspects of 
Mathematical Knowledge for Teaching that were investigated. The findings can’t be 
generalized, due to the small sample size, but can be used as a starting point for deeper 
exploration of these issues in the future.   
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