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Interpreting literal symbols in algebra under the effects of the 
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ABSTRACT
In this study, we investigated how secondary students interpret algebraic 
expressions that contain literal symbols to stand for variables. We hypothe-
sized that the natural number bias (i.e., the tendency to over-rely on knowl-
edge and experiences based on natural numbers) would affect students to 
think that the literal symbols stand for natural numbers only rather than for 
any rational or real number (integrity effect); and that the arithmetical values 
of the algebraic expressions are of the same sign as the expressions’ phe-
nomenal sign (phenomenal sign effect). The participants (138 8th and 9th 
graders) were asked to evaluate 48 statements about numbers that can or 
cannot be assigned to six algebraic expressions that contained literal sym-
bols (e.g., a, -d-4). The results supported the main hypothesis of the study 
with respect to the integrity as well as the phenomenal sign effect and also 
indicated that the former was stronger than the latter. Additionally, the most 
salient characteristics of the form of each expression, such as its sign, 
appeared to affect students’ responses regarding the arithmetical values 
they may represent. Theoretical and educational implications are discussed.
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Introduction

Algebra has been described as the gatekeeper to upper-level mathematics and later achievement 
(J. L. Booth & Newton, 2012; Bush & Karp, 2013; Powell et al., 2019). Acquiring the concept of 
variable is widely recognized as a major challenge for students in the transition from arithmetic to 
algebra (Kieran, 2006; Lucariello et al., 2014; Schoenfeld & Arcavi, 1988). Students’ understanding of 
variables influences their performance in many different algebraic topics such as solving equations and 
inequalities; representing functions; and problem-solving, via affecting students’ solution strategies as 
well as the justifications they provide for their solutions (Knuth et al., 2005). Variables are usually 
represented by literal symbols (i.e., letters from the alphabet). There is common ground that capturing 
the variety of meanings and uses of the notion of variable in mathematics is very challenging 
(Schoenfeld & Arcavi, 1988; Wagner, 1983). The fact that letters are used in many ways in algebra, 
for example, to represent unknown numbers, generalized numbers, or functional relationships, is 
among the reasons for the many difficulties that appear on the part of the students (Asquith et al., 
2007; Blanton et al., 2017; Brizuela, 2016; Kieran, 2006). At some point (at Grade 6 in Greece) variables 
are introduced in the mathematics curriculum as letters to stand for any number of a given set. This 
study focuses on two specific difficulties students appear to have with understanding variables 
(Christou, 2012; Christou & Vosniadou, 2009; Christou et al., 2007): a) the tendency to interpret 
literal symbols as natural numbers only (a phenomenon that we call the integrity effect); and b) the 
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tendency to assign to the arithmetical values of the algebraic expression an invariant sign, consistent 
with the one that the expression appears to have as a salient feature of its form (a phenomenon that we 
call the phenomenal sign effect).

In the present study we argue that these phenomena are effects of the natural number bias (i.e., the 
tendency to over-rely on knowledge and experiences based on natural numbers). We extend prior 
studies by employing a more systematic questionnaire that allows for investigating the following three 
questions, which haven’t been answered so far: a) Which of the two natural number effects is stronger, 
the integrity effect or the phenomenal sign effect?, b) Does the type of the phenomenal sign of the 
expressions (positive or negative) makes a difference in students’ judgments?, and c) Would students 
be more likely to assign non-natural values to an integer-like expression (e.g., k + 3) or to a fraction- 
like expression (e.g., 4/5y)?

Theoretical and empirical background

Students’ difficulties with the use of literal symbols in algebra attracted the interest of mathematics 
education research from very early on. In a seminal study in the 80s, Kuchemann (1981) found that 
most 13-, 14-, and 15-year-old students interpreted literal symbols to stand only for abbreviated names 
of people or objects as, for example, a label for an object or an object itself (e.g., a to stand for apples 
and not for the number of apples), or as coded numbers, with values corresponding to their positions in 
the alphabet (L. R. Booth, 1988; Knuth et al., 2005; MacGregor & Stacey, 1997; Usiskin, 1988); fewer 
students considered them as specific unknowns (i.e., that they represent a specific unknown number 
with a fixed value); even fewer students appeared to consider literal symbols as generalized numbers 
(i.e., representing multiple values, one at a time), or variables (i.e., representing, at once, a range of 
numbers; Kuchemann, 1981). Subsequent studies further supported these findings and indicated that 
at some point, usually by Grade 10, students abandon the less sophisticated initial conceptions and 
come to develop an understanding of literal symbols as standing for specific unknown numbers 
(L. R. Booth, 1984; Knuth et al., 2005; Lucariello et al., 2014; MacGregor & Stacey, 1997; McNeil et al., 
2010; Weinberg et al., 2016). However, understanding them as generalized numbers and as variables is 
much more difficult to accomplish, and such difficulties persist even when students receive detailed 
instructions to correct their mistakes (Asquith et al., 2007; Blanton et al., 2017; L. R. Booth, 1984).

Following the same line of research, recent studies that investigated students’ misconceptions about 
variables in algebra also focused on different levels of understanding variables (i.e., whether variables 
are ignored, are understood as labels or as objects, are understood as specific or as generalized 
numbers; Lucariello et al., 2014; Powell et al., 2019). Christou and Vosniadou (2012) introduced 
a different question in this research area, which is the main research question also in this study: What 
kind of numbers are students willing to accept as substitutes for literal symbols representing variables? 
Are they willing to accept that variables may represent any real number?

At first glance, this question might seem narrow. One could argue that substituting numbers for 
literal symbols is an elementary school task, and that operating with variables independently of any 
referential meaning is the very essence of algebra. However associating variables with numbers, and 
thus, connecting the algebraic formalism with the “world of numbers” is a fundamental way of making 
meaning of the algebraic expressions, which also reflects on students’ ability to operate with variables. 
As noted by prominent researchers who have studied students’ learning of algebraic symbolism, even 
when students have developed a more abstract, structural understanding of an algebraic expression, 
which may allow them to perceive it as an entity in its own right, they do not necessarily disengage this 
entity from its initial reference to numbers, quantities, and to the relations among them that it 
represents (Arcavi, 1994; Kieran, 2007; Resnick, 1987; Schoenfeld, 2017; Sfard, 1995; Wagner, 1983). 
In fact, connecting algebraic expressions with their referential meaning – their semantics- helps 
students acquire a better understanding of the formal algebraic methods and increases performance 
in various mathematical tasks (Amado et al., 2019; Bush & Karp, 2013; Crowley et al., 1994; Demby, 
1997; Graham & Thomas, 2000; Kieran, 1992; Resnick, 1989). For example, it may help someone 
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understand why 2×2 < 0 has no real number solutions, that 4 × 4 > 0 is valid for any real number, or 
convince someone that a + b = b + a. Although “guess and check” with specific numbers rarely 
provides mathematically accepted solutions it has often proven to be an effective problem-solving 
strategy (see for example, Johanning, 2004). For these reasons, limitations in the ways students 
associate literal symbols and numbers could result in distorted meanings of the algebraic expressions, 
which in turn may result in mistakes and low performance in tasks that include them, such as tasks 
related to equations, inequalities, and functions. For example, associating only natural numbers with 
literal symbols may result in accepting only one solution to equations such as x2 = 25, which is a well- 
known phenomenon in the mathematics classroom.

There is evidence that when primary school students are first introduced to symbols or placeholders 
for symbolizing unknown numbers in equalities, they tend to interpret them as standing for natural 
numbers even when students are familiar with non-natural numbers such as fractions and decimal 
numbers (Switzer, 2018). It could be argued that these initial tendencies are not surprising, given the 
limited time students are exposed to non-natural numbers, compared to natural numbers. Moreover, 
literal symbols, as presented in junior high school mathematics textbooks (i.e., in worked-out 
examples as well as in tasks for students), typically stand for natural numbers, and less frequently 
for negative integers, or non-integer numbers (Dimitrakopoulou & Christou, 2018), even though the 
definition of variables that are included, specifically mention that any real number can be substituted 
for the variables in the algebraic expressions. Thus, it might be the case that students’ initial tendencies 
to associate literal symbols only with natural numbers are strengthened and may persist at older ages.

Because of the strong connection between numbers and the concept of variable, Christou and 
Vosniadou (2012) embraced the framework theory approach to conceptual change, as applied in 
studying the development of the number concept (Vosniadou et al., 2008; Vosniadou & Verschaffel, 
2004), to investigate students’ interpretations of literal symbols representing variables that are con-
tained in algebraic expressions. This theoretical framework assumes that before they are introduced to 
non-natural numbers, students have already consolidated a complex system of interrelated concepts 
and beliefs, tied around their knowledge and experiences with natural numbers, which are built from 
very early on. This initial framework theory for number underlies students’ expectations about what 
a number is and how it is supposed to behave, shaping their interpretations of other kinds of numbers 
and affecting their reasoning and solution strategies in a variety of tasks (Vamvakoussi & Vosniadou, 
2010; Vosniadou et al., 2008). The framework theory approach to conceptual change predicts that the 
transition from an initial concept of number as natural number, to an elaborate rational or real 
number concept, is a long-term process characterized by misconceptions, inconsistent responses (e.g., 
in similar tasks, albeit in different contexts), and also by synthetic conceptions of features and proper-
ties of numbers that reflect partial revisions of their initial understandings, in light of new information 
coming from instruction. So, for example, students are found to make systematic mistakes indicating 
that they draw on natural number knowledge when comparing fractions or decimal numbers (e.g., 
selecting the “larger” decimal as the bigger number; Nesher & Peled, 1986). They may also keep, for 
example, the initial idea that the size of a number depends on the number of its digits, combine it with 
the information that “thousandths are smaller than hundredths” and infer that “shorter decimals are 
larger,” forming a synthetic conception (Van Hoof et al., 2017). Further, besides being more accurate, 
students are also found to respond faster to tasks that are compatible with natural number knowledge 
than to tasks that are not (Van Hoof et al., 2013, 2017). This phenomenon has been called whole or 
natural number bias ((Ni & Zhou, 2005; Van Dooren et al., 2015). We opt for the term natural number 
bias (hereafter, NNB).

In a series of studies, Christou and his colleagues (Christou & Vosniadou, 2009, 2012; Christou 
et al., 2007) tested the hypothesis that the NNB affects students’ interpretations of algebraic expres-
sions (i.e., combinations of numbers, letters, and signs of operations that include one or more 
variables, for example, a, k + 3, -b-1, x-2y). More specifically, it was hypothesized that students’ initial 
conceptions of numbers, which are tied around natural numbers, would affect them to interpret literal 
symbols in algebra as symbols that stand for natural numbers, rather than for any real number. This is 
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contrary to what they have been taught at school, and is also explicitly mentioned in their mathema-
tical textbooks, namely that literal symbols stand for any real number, unless otherwise specified. This 
hypothesis was tested using different tasks, with open-ended and multiple-choice questionnaires, and 
with individual interviews.

Christou and Vosniadou (2005), Christou (2012)) administered to junior high school students 
a questionnaire with open-ended items, presenting algebraic expressions (e.g., a, k + 3, -b) and asking 
about possible arithmetical values that such expressions could and could not take. When responding to 
the affirmative question, students would typically give 1, 2, 3 as examples of possible values in the case 
of a; 4, 5, 6, . . . in the case of k + 3; and −1, −2, −3, . . . in the case of -b. When responding to the 
negative question, students would commonly give −1, −2, −3, . . . as examples of values that a could not 
take; and similarly, 1, 2, 3, . . . in the case of -b; and −2/-3, −3/-4 in the case of a/b. Such responses, 
which are correct in the first case but incorrect in the second, indicated that students tended to 
interpret literal symbols mainly as natural numbers. This finding was also corroborated via individual 
interviews (Christou & Vosniadou, 2012) with different participants. In those interviews the students 
claimed, for example, that 5d is always bigger than 4/d, supporting their claim via testing with natural 
numbers; explicit hints to test with at least one non-natural number were necessary for them to 
consider non-natural numbers as possible values for the literal symbols.

However, another possibility for excluding numbers as possible values of an algebraic expression 
was also traced. Christou et al. (2007) administered a questionnaire with multiple-choice items to 
secondary students. They were presented with algebraic expressions and asked to select from a given 
set of numbers that included positive and negative integers and non-integer numbers, those (if any) 
that they thought could not be among the values of the given expression. A common pattern of 
responses indicated systematic exclusion of numbers that could not be obtained via substituting the 
literal symbols with natural numbers. An additional pattern, however, indicated systematic exclusion 
of positive numbers (either natural or non-natural), when the expression had a salient negative sign 
(e.g., -b), and vice versa. It should be noted that although it is possible for all the values of an algebraic 
expression to be of the same sign, algebraic expressions, in general, may have either positive or 
negative values, irrespective of the sign they appear to have. For example, -b is negative when b takes 
positive values, and positive when b takes negative values. The fact that signs attached to literal 
symbols do not always match their values has been long identified as a notable difference between 
literal symbols in algebra and numbers in arithmetic, which could create additional difficulty when the 
concept of variable is developed (Matz, 1979, as cited in Wagner, 1983). The studies reported above 
have offered empirical evidence in support of these theoretical assumptions. Further, this finding by 
Christou et al. (2007) has been corroborated by a replication study with Flemish students (Van Dooren 
et al., 2010) and is consistent with findings showing that students tend to associate the symbol of the 
negative sign with negativity (i.e., negative values; Vlassis, 2008), and the lack of the negative sign with 
positivity (Chiarugi et al., 1990).

There are two ways to explain this finding: First, it may be a direct byproduct of students’ tendency 
to interpret literal symbols as natural numbers (i.e., a direct NNB effect). In this case, algebraic 
expressions such as -b or k + 3 would necessarily be considered negative and positive, respectively. 
Second, students may decide a priori that the expression has an invariant sign, based on the symbols 
“+” or “-“ that the expression contains and are most salient to them. This could be a result of retaining 
(at least) one feature of the most elementary interpretation of literal symbols as natural numbers, that 
is, positivity. Thus, k + 3 could be allowed to take non-natural values, provided they are positive (e.g., 
3.5); similarly, -b could be allowed to take non-natural values, provided they are negative (e.g., −0,5). 
Such interpretations can be accounted for as synthetic conceptions in terms of the framework theory 
approach to conceptual change (Christou & Vosniadou, 2012; Vamvakoussi et al., 2018; Van Dooren 
et al., 2010; Vosniadou et al., 2008), and can be also considered a NNB effect.

To summarize, there is some empirical evidence that the NNB has a dual effect on students’ 
interpretations of algebraic expressions. First, it underlies students’ tendency to interpret literal 
symbols as natural numbers only, a phenomenon that we call the integrity effect. Second, it underlies 
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the tendency to assign to the arithmetical values of the algebraic expression an invariant sign, 
consistent with the one that the expression appears to have as a salient, albeit superficial, feature of 
its form. Thus, negative numbers may be excluded as possible values of positive-like algebraic 
expressions such as a, or k + 3; and positive numbers may be excluded as possible values of negative- 
like algebraic expressions such as -b. At the same time, values that cannot be derived via substituting 
literal symbols with natural numbers could be accepted, provided that their sign is consistent with the 
expected one. We call this tendency the phenomenal sign effect.

The present study

The purpose of the present study was to more systematically investigate the NNB effects on students’ 
interpretations of algebraic expressions. We hypothesized that there would be a dual NNB effect on 
students’ evaluations, namely the integrity effect and the phenomenal sign effect. Unlike previous 
studies (Christou & Vosniadou, 2005, 2012; Christou et al., 2007; Van Dooren et al., 2010) that 
asked students to assign values, or exclude numbers as possible values of algebraic expressions, in this 
study we opted for directly asking the participating students to judge whether a given number could be 
among the values of a given expression, or not. This allowed us to develop a more focused ques-
tionnaire, varying systematically the alternatives offered to students; and to test statistically which 
effect is stronger, the integrity or the phenomenal sign effect.

In addition, we investigated whether they would be differences in students’ judgments due to the 
type of the phenomenal sign (positive or negative). Typically, there is no positive sign in the first term 
of the algebraic expressions (i.e., one writes k + 3 rather than +k + 3). On the contrary, the negative 
sign may appear in the first term of an algebraic expression (e.g., -k + 3). We reasoned that students 
would be more likely to infer a negative phenomenal sign in an expression such as -k-3, than they are 
to infer a positive phenomenal sign in an expression such as k + 3, because the phenomenal sign is 
more salient in the first than in the latter case.

Finally, we investigated whether students would be more likely to assign non-natural values to an 
integer-like expression (e.g., k + 3) or to a fraction-like expression (e.g., 4/5y). We reasoned that 
students who would accept a non-natural value in the first case could still assign only fractional values 
in the second, either because they fall back to interpreting literal symbols as natural numbers when the 
expression is more complex, or because the form of the expression steers them toward fractional 
values.

Method

Participants

The participants were 138 students from two Greek middle-class urban public high schools. Sixty- 
eight attended Grade 8, and 70 attended Grade 9; 77 were girls. All students were Greek native 
speakers, without special education needs. Greek students are introduced to positive rational numbers 
at Grade 3; to negative numbers as well as to the concept of variable at Grade 6; and to real numbers at 
the beginning of Grade 8. In particular, students by Grade 8 are intended to know that variables in 
algebra are represented by literal symbols, which stand for any real number unless otherwise specified. 
This is explicitly mentioned in the national mathematics curriculum and presented in the definitions 
that appear in the textbooks that are used in all Greek schools. Thus, our participants had in principle 
been exposed to instruction that would allow them to deal with the research tasks correctly.

Materials

We developed a questionnaire that presented 48 statements declaring either that it is possible or that it 
is not possible for a given algebraic expression to take a given numerical value. Students were asked to 
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state whether they agree or disagree with each statement. Each of six algebraic expressions (a, -b, k + 3, 
-d-4, 4/5y, −4/5z) was combined with eight different numerical values (positive and negative integers, 
fractions, and decimal numbers) to produce the 48 statements. Half of the statements were given in 
affirmative form. An example of such an item is: “it is possible for -b to stand for the number 2.” For 
this kind of task, the answer I agree was correct. The other half items were presented in a negative form 
as a means to also include tasks with I disagree as the correct response. An example of such an item is: 
“it is not possible for -b to stand for the number −8.”

The above resulted in a design of tasks that were either congruent or incongruent with students’ 
assumed tendencies. More specifically, there were statements a) congruent with integrity (CongInt) in 
which the given value was a natural number that could be derived if natural numbers were assigned to 
the literal symbol of the given expression (e.g., it is possible for a to stand for 6); b) incongruent with 
integrity (IncongInt) in which the given value was a (non-whole) decimal or fraction that could not be 
derived if natural numbers were assigned to the literal symbol of the given expression (e.g., it is 
possible for a to stand for 1/6); c) congruent with the phenomenal sign (CongSign) in which the sign of 
the given value was the same as the phenomenal sign of the given expression (e.g., it is possible for a to 
stand for 3/4); and d) incongruent with the phenomenal sign (IncongSign), in which the sign of the 
given value was the opposite of the phenomenal sign of the expression (e.g., it is possible for a to stand 
for −2). Thus, four main task categories were formed depending on whether each task was congruent 
or incongruent with the integrity and/or with the phenomenal sign (see examples in Table 1 and all the 
given tasks in the Appendix). For half of the congruent and incongruent items, the correct answer was 
“I agree” and for the other half it was “I disagree.”

In order to test the effect of the form of the algebraic expression, four of the given expressions had 
an integer-like form (a, -b, k + 3, -d-4) and the other two had a fraction-like form (4/5y, −4/5z). Also, 
half of the given expressions had a positive-like form (a, k + 3, 4/5y), that is, a salient positive 
phenomenal sign and the other half had a negative-like form (-b, -d-4, −4/5z), that is, a salient negative 
phenomenal sign.

At the beginning of the questionnaire, there was a note that reminded students that literal symbols 
such as a, b, k, x, etc., are often used in mathematics to stand for numbers, and that this is the way they 
are used in this questionnaire. Also, they were asked to place an X in the box that best represented their 
answer (either agree or disagree).

Procedure

The questionnaire was initially tested in a pilot study with 16 participants from different public schools 
attending Grades 8 and 9. We explored whether the students could understand what the tasks asked 
them to do and whether the given instructions were helpful. Also, we measured the average time 
needed for the completion of the questionnaire. The results were used to finalize the form of the 
questionnaire and the procedure that was followed in the main study.

The revised questionnaires were administered by a researcher (second author) to the participants 
during their mathematics course, in the presence of their mathematics teacher, who was not informed 

Table 1. Examples of tasks by category of congruency/incongruency with integrity and phenomenal 
sign.

Task Category Example

CongInt / CongSign it is possible for -b to stand for −4 
it is not possible for -b to stand for −8

CongInt / IncongSign it is possible for -b to stand for 2 
it is not possible for -b to stand for 3

IncongInt / CongSign it is possible for -b to stand for −2.8 
it is not possible for -b to stand for −1/2

IncongInt / IncongSign it is possible for -b to stand for 4/3 
it is not possible for -b to stand for 5/6
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about the specific content or focus of the study in order not to prepare the students for this test. Their 
mathematics teachers only asked the students to complete the test with the necessary caution, as if this 
was a regular mathematics assessment test. All clarification questions by the students were answered 
by the researcher. The researcher, in the verbal instructions she gave at the beginning of the 
examination, read the written instruction to the students mentioning that the literal symbols in the 
given statements refer to real numbers, reminding the students that all numbers they know of are real 
numbers. The students had one teaching hour (40 minutes) to take and complete the questionnaires; 
however, none of the students exhausted the given time, as noted by the researcher, who was present 
throughout the examination. From her observations, most students completed the test within 20 min-
utes, and the questionnaires were collected immediately after they were completed.

Results

Students’ responses to the tasks were scored on a right/wrong basis. There were very few items left 
unanswered; the corresponding missing data were treated as incorrect responses. The software suite 
SPSS 24 was used for the statistical analysis of the data. Overall the questionnaire showed sufficient 
reliability (Cronbach’s Alpha = .738). The analysis of students’ overall performance showed no main 
effect for grade [F(1, 134) = 0.72, p = .398], or school [F(1, 134) = 0.997, p = .320]. The mean scores 
were calculated for each category of tasks and are presented in Table 2. Students’ highest performance 
appeared in the CongInt/CongSign tasks, and their lowest performance appeared in the IncongInt/ 
IncongSign tasks.

The results of a two factor (integrity and phenomenal sign) analysis of variance with repeated 
measurement showed main effects for integrity [F(1,137) = 106,36, p < .001, ηp

2 = .44] and for 
phenomenal sign [F(1,137) = 56,36, p < .001, ηp

2 = .29] (normality and sphericity assumptions were 
satisfied). The effect size comparison showed that the size of the integrity effect was larger than the size 
of the phenomenal sign effect.

Further, for CongSign items, we compared students’ performance in the integer-like expressions 
with their performance in the fraction-like expressions. The results of a t-test analysis showed 
significantly higher performance for the integer-like expressions than for the fraction-like expressions 
[t(137) = 28.683, p < .001] (see, Table 3).

Similarly, for CongInt items, we compared students’ performance in positive-like expressions to 
their performance in negative-like expressions. A t-test analysis showed significantly higher perfor-
mance in the first than in the latter [t(137) = 4.127, p < .001] (see, Table 3).

Table 2. Performance for each category of research tasks.

Minimum Maximum Mean S.E.

CongInt/ 
CongSign

3 12 8.38 0.19

CongInt/ 
IncongSign

0 12 6.01 0.21

IncongInt/ 
CongSign

1 12 6.11 0.19

IncongInt/ 
IncongSign

0 12 4.89 0.23

Table 3. Mean performance in integer vs fraction-like expressions, and positive vs negative-like 
expressions; error bars showing the 95% confidence interval.

Expression form Minimum Maximum Mean S.E.

Integer-like 4 16 10.31 0.23
Fraction -like 1 8 4.35 0.11
Positive – like 6 24 13.29 0.33
Negative – like 4 24 11.92 0.30

MATHEMATICAL THINKING AND LEARNING 7



We also tested for potential differences due to the formulation of the question (affirmative/ 
negative). A t-test showed no statistically significant difference between mean performance in the 
items corresponding to affirmative questions and in the ones corresponding to negative questions t 
(137) = .368, p = .714. Additionally, students’ mean performance in the first 10 questions of the 
questionnaire was not significantly different from the mean performance in the last 10 questions of the 
questionnaire t(137) = .121, p = .904, indicating that students did not get tired or lost interest in 
completing the questionnaire.

Discussion

This study builds on, and extends, prior research on the effects of NNB on students’ interpretations of 
algebraic expressions. NNB refers to a widely noted phenomenon, specifically that people tend to think 
primarily in terms of natural numbers in many different situations that involve numbers (Ni & Zhou, 
2005; Van Hoof et al., 2013). Algebraic expressions contain literal symbols that represent numbers, 
which is precisely the reason why one could expect NNB effects on students’ interpretations of 
algebraic expressions.

Previous studies (Christou & Vosniadou, 2009, 2012; Christou et al., 2007; Van Dooren et al., 2010) 
have provided evidence that students tend to misinterpret literal symbols to stand for natural numbers 
rather than for any (real) number (integrity effect). Students also tend to assign to the values of a given 
algebraic expression an invariant sign (phenomenal sign effect). As already discussed, both effects can 
be attributed to NNB.

In the current study, we looked at these effects in a more systematic way. We designed a research 
tool with tasks that directly asked students from 8th and 9th grade to agree or disagree with statements 
declaring that a specific number can or cannot be among the values of a given expression, varying 
systematically the kind of numbers and the form of the expressions.

The results showed that there is indeed a dual NNB effect on students’ interpretations of algebraic 
expression, which was the main hypothesis of the study. Specifically, concerning the integrity effect, the 
students tended to perform significantly better in statements that were congruent with the belief that 
only natural numbers can be assigned to literal symbols (e.g., k + 3 can stand for 9) than in statements 
that were incongruent with this belief (e.g., k + 3 can stand for 4/5). For the phenomenal sign effect of 
the NNB, the students performed significantly better in the statements that were congruent with the 
belief that the numbers assigned to an algebraic expression should be of the same sign as its 
phenomenal sign (e.g., that k + 3 cannot stand for −1) than in the ones that were incongruent with 
this belief (e.g., that k + 3 cannot stand for 5). These results provide further empirical support to 
previous findings in the field (Christou & Vosniadou, 2009, 2012; Christou et al., 2007; Van Dooren 
et al., 2010). The results also showed that the integrity effect is stronger than the phenomenal sign 
effect, which indicates that students are more willing to accept numbers with the opposite sign than the 
phenomenal sign of an expression as its values, than to accept non-integer number substitutions for 
the literal symbol of the expression.

Further, the results of this study highlight in more detail some other aspects of these NNB effects 
that have not been identified before. Specifically, in integrity-congruent statements, the students 
performed significantly higher when the algebraic expression had a positive phenomenal sign (e.g., 
k + 3), than when the algebraic expression had a negative phenomenal sign (e.g., -d-4). This finding 
indicates that the negative phenomenal sign exerts a stronger influence on students’ interpretations of 
algebraic expressions than the positive phenomenal sign. This is consistent with studies showing that 
the symbol “-“ is directly associated with negativity (Vlassis, 2008).

In addition, for the phenomenal sign–congruent statements, the students performed significantly 
better in integer-like expressions, than in fraction-like expressions. This finding indicates that students 
were more willing to accept that an integer-like expression could take non-integer values than to 
accept that a fraction-like expression could take non-fractional values. This may indicate that students 
who do consider non-integer values for the literal symbols in certain, relatively simple, cases, fail to do 
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so in other cases, presumably because the form of the expression leads them to expect values that are 
similar in form. Alternatively, they may fall back on interpreting literal symbols as natural numbers 
when the algebraic expressions are more complex, as in the case of fractional algebraic expressions, 
where the variable is in the denominator.

Overall, the results indicate that students’ interpretations of algebraic expressions are directly 
affected by their background assumptions of the possible values that literal symbols can take; and by 
their expectations regarding the possible values that the algebraic expression can take based on its 
form, which again depends on assumptions regarding the literal symbols. The most pervasive 
assumption seems to be that literal symbols represent positive integer numbers, that is, natural 
numbers. This is in fact a two-fold assumption consisting of the assumption of integrity and the 
assumption of positivity. These assumptions arguably make the expression k + 3 seem integer-like and 
positive-like; and the expression −4/5z seem fraction-like and negative-like. The assumptions of 
integrity and positivity apparently are not lifted at once and constrain students’ interpretations of 
algebraic expressions, after students come to apprehend literal symbols as representations of numbers. 
Such intermediate states of understanding are predicted by the framework theory approach to 
conceptual change (Christou & Vosniadou, 2012; Van Dooren et al., 2010; Vosniadou et al., 2008) 
and may reflect synthetic conceptions when the assumptions are only partially lifted. For example, that 
k + 3 could be allowed to take non-natural values provided that they are positive; or k + 3 could be 
allowed to take negative and fractional values whereas -k-3 is allowed fractional but not positive values. 
This opens the possibility of intermediate states of understanding literal symbols as specific unknowns, 
as generalized numbers, as well as variables (Kuchemann, 1981), depending on the type of numbers 
that students expect the literal symbols to represent in each case. This offers a more nuanced picture of 
the development of understanding of literal symbols that is consistent with predictions stemming from 
the framework theory approach to conceptual change.

A limitation of this study is that the results are based on students’ responses to a questionnaire, with 
48 de-contextualized questions of the same type, half of which were negative. We included affirmative 
as well as negative questions so that “I agree” would not always be the correct answer because this 
would be incompatible with students’ experiences with tests. We were aware, however, that negative 
questions increase cognitive load compared to affirmative questions (Evans, 1993). Thus, we tested for 
possible differences between students’ responses in the affirmative questions and the negative ques-
tions and found no statistically significant differences. There is also the possibility that answering 
repeatedly to the same type of question might have been tiresome for some students who eventually 
might have lost interest. However, we didn’t find significant differences in students’ mean perfor-
mance at the beginning and at the end of the questionnaire, an indication that students maintained 
their attention while responding to the given tasks. We cannot exclude, of course, the possibility that 
some students were not at all invested in responding to the tasks, even though their mathematics 
teacher was present and advised them to treat the questionnaire as a regular mathematics test. Future 
studies, in wider and more diverse populations also applying complementary methods, such as 
individual interviews or the use of contextualized tasks could shed more light on the phenomena 
tested here. This way, the results could be easier to generalize to wider populations.

Misinterpreting algebraic expressions do not come without consequences. The findings of Christou 
and Vosniadou (2009) study suggested that students’ limited interpretations of the use of literal 
symbols in algebra caused them great difficulty in solving inequalities, and finding the domain of 
functions, especially when algebraic expressions appeared in square roots and in absolute values. 
Considering that algebra is deemed the gatekeeper of upper-level mathematics (Bush & Karp, 2013), it 
is reasonable to assume that narrow conceptions about the range of arithmetical values of algebraic 
expressions may restrain understanding and reduce performance in many mathematical content areas. 
This is because, as mentioned in the introduction, the referential meaning of algebraic expressions 
depends on the referential meaning of the literal symbols that they contain; and such meanings are 
essential for the development of students’ more abstract understandings of algebraic expressions (see 
for example, Kieran, 2007; Resnick, 1987, 1989; Schoenfeld, 2017; Wagner, 1983).
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Recent studies have provided empirical evidence that rational number knowledge act as 
a dominating contributor to algebra performance (Powell et al., 2019). In the same line, J. L Booth 
and Newton (2012) specifically stated that they “believe that there is something special about the 
relationship between fraction knowledge and algebra readiness” (p. 252), without, however, explaining 
what this relationship might be. From our perspective, one possible reason for this strong relationship 
could be the NNB-based constraints on students’ interpretations of literal symbols as representations 
of numbers. Although associating literal symbols exclusively, or primarily, with natural numbers is 
perhaps an expected part of the developmental progress of the concept of variable, there is evidence 
showing that this tendency is robust. Indeed, it has been found in 10th graders (Christou & 
Vosniadou, 2009) and college students (Vamvakoussi et al., 2013). This does not mean that the 
students who show this tendency will deny that a variable can take on a negative or fractional value 
if asked explicitly; rather, evidence from individual interviews indicates that they do not tend to do it 
spontaneously and may only acknowledge this possibility after they are explicitly asked (Christou & 
Vosniadou, 2012). In fact, responding incorrectly, even though the knowledge necessary to respond 
correctly is available, is what makes NNB a “bias.”

Several suggestions for tackling the NNB effects in algebra are already available in the literature. 
Some approaches aim at addressing already established misconceptions. One such suggestion is the 
use of erroneous examples as a means to make students aware of their misconceptions (Isotani et al., 
2011). In the same vein, a teaching intervention that used refutational argumentation provided some 
promising results. Refutational argumentation consists of directly stating students’ erroneous concep-
tions, for example, for the sign of algebraic expressions, and then refuting them by presenting students 
with alternative viewpoints. The results showed that students who attended the intervention did 
significantly better immediately after the intervention and those benefits were maintained in the 
retention test one month later (Christou, 2012). We note, however, that we do not expect one-time 
interventions to suffice; rather, systematic re-visiting of the same topics in different contexts is 
necessary, intending to support students to develop their metacognitive strategies (such as the “stop- 
and-think” strategy (Greer, 2009) as a means to monitor and control their thinking in such contexts. 
To this end mathematics teachers in the middle and earlier grades need to be aware of the particular 
difficulties, which is useful to actively analyze student work samples or classroom performance, or for 
setting the common mistakes out as counterexamples for students to confront, discuss, and analyze 
(Asquith et al., 2007; Bush & Karp, 2013). Mathematics teachers’ awareness of such phenomena may 
be heightened by including these issues in programs for professional development. More importantly, 
such issues should be addressed in curricular materials for teachers.

On the other hand, some approaches may be followed longitudinally to alleviate the NNB 
effects. For example, teaching that emphasizes the connection between variables and real numbers 
could start from very early on, when students are introduced to symbols that stand for numbers in 
the context of equalities in arithmetic (Switzer, 2018). A functional approach to algebra, where 
letters represent varying quantities rather than unknown numbers, and algebraic expressions 
represent relations between quantities rather than a constant quantity (Kieran, 2006), could also 
be beneficial.

Such approaches could promote students’ understanding of the concept of variable along with the 
concept of number in the long run, provided that students have the opportunity to work with a variety 
of non-natural measures of quantities. This is because an emerging understanding of variables as 
symbols to represent a range of numbers could promote an understanding of natural and non-natural 
numbers as unified systems of (rational or real) numbers, and vice versa. It should be noted that such 
approaches require a long-term perspective on mathematics instruction and the purposeful design of 
mathematics curricula.
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Appendix: The tasks that were included in the questionnaire

It is possible for a stand for 6 It is not possible for -b to stand for −8

It is possible for -d-4 to stand for 3 It is not possible for -d-4 to stand for – 7/8
It is not possible for -b to stand for – 1/2 It is not possible for 4/5 y to stand for 16/5

It is not possible for k + 3 to stand for −1 It is possible for k + 3 to stand for −2.8
It is possible for 4/5 y to stand for −2 It is possible for -4/5 z to stand for −5.2
It is possible for – 4/5 z to stand for – 4/5 It is not possible for -b to stand for 5/6

It is not possible for k + 3 to stand for 5 It is possible for k + 3 to stand for −3
It is possible for 4/5 y to stand for 6.9 It is possible for -d-4 to stand for −9

It is not possible for -d-4 to stand for 5.6 It is possible for -b to stand for −2.8
It is not possible for a to stand for −5 It is not possible for -d-4 to stand for 8

It is possible for – 4/5 z to stand for – 4/5 It is not possible for a to stand for 1/6
It is possible for -d-4 to stand for −4.7 It is not possible for k + 3 to stand for 4.2

It is not possible for -b to stand for 3 It is not possible for a to stand for 3
It is not possible for a to stand for – 2/5 It is possible for 4/6 y to stand for −16/5
It is not possible for -d-4 to stand for −6 It is possible for -b to stand for 2

It is not possible for 4/5 y to stand for 12/40 It is not possible for – 4/5z to stand for 5.8
It is not possible for – 4/5 z to stand for 8/5 It is not possible for – 4/5 z to stand for – 8/5

It is possible for k + 3 to stand for 9 It is possible for a to stand for −8.9
It is not possible for 4/5 y to stand for – 12/5 It is not possible for k + 3 to stand for – 5/2

It is possible for – 4/5 to stand for 2 It is not possible for – 4/5 z to stand for −6.9
It is possible for -d-4 to stand for 4/5 It is possible for a to stand for 3/4
It is possible for k + 3 to stand for 4/5 It is not possible for 4/5 y to stand for −3.4

It is possible for a to stand for −2 It is possible for -b to stand for −4
It is possible for 4/5 y to stand for 8/5 It is possible for -b to stand for 4/3
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