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1. Introduction

This special issue addresses the development of rational number
knowledge,' an issue that has been studied extensively by mathe-
matics education researchers, cognitive-developmental psycholo-
gists and, more recently, has attracted the interest of
neuroscientists as well (e.g., Jacob, Vallentin, & Nieder, 2012).
Building on a rich body of prior research, and some exciting new
ideas, the contributors re-visit several topics, with a view to refine
and deepen our understanding of how rational number under-
standing is developed. Kelley and Rittle-Johnson study mis-
conceptions about decimal numbers in connection to the
individual's confidence about the response; McMullen, Laakkonen,
Hannula-Sormunen, and Lehtinen study the development of stu-
dents' understanding of density in a longitudinal study and with
the use of new statistical techniques; Van Hoof, Vandewalle, Ver-
schaffel, and Van Dooren take a closer look at students' interpre-
tation of literal symbols and their understanding of the effect of
operations combined; DeWolf and Vosniadou, and Torbeyns,
Schneider, and Siegler look into fraction magnitude representations
with a view to support two different, albeit not incompatible,
theoretical views.

E-mail address: xvamvak@cc.uoi.gr.

! For the purposes of this commentary, the term rational number is used to refer
to numbers that are in, or can be converted to, the form a/b, where a and b are
integers and b is non-zero. This is consistent with the school mathematics defini-
tion of the rational numbers, and by no means equivalent to the formal definition of
the rational numbers.
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2. Rational numbers are difficult ... but why?

Let me start this commentary with a point stressed in all con-
tributions, namely that rational numbers are challenging for stu-
dents. Drawing on empirical evidence as well as conceptual
analyses coming for numerous studies, Moss (2005) summarizes
several reasons why rational numbers are difficult: Students need
to construct a complex knowledge network based on multiplicative
rather than on additive relations; new symbols and representations
are introduced that need to be understood and coordinated; the
notion of the unit and of the arithmetical operations need to be
reconceptualised; and there are several conceptually distinct
meanings attached to rational numbers that, again, need to be
understood and coordinated. These include the part-whole aspect
of fraction, fraction as a quotient, fraction as a multiplicative
operator, fraction as a ratio, and fraction as measure. The latter is
closely related to an aspect that is particularly relevant to this
special issue: Rational numbers are numbers, that is, abstract en-
tities that take their meaning within a number system, through
their relations with other numbers and in accordance with certain
principles and rules, such as the basic laws of arithmetic (e.g.,
Kilpatrick, Swafford, & Findell, 2001). There is a huge difference
between abstract and concrete conceptualizations of number (both
historically and developmentally). Indeed, “three apples are more
than two apples” is not the same as “3 is bigger than 2”; similarly,
“half of an apple is more than one quarter of the apple” is not the
same as “1/2 is bigger than 1/4”. The latter, abstract, conceptuali-
zation is far more challenging (Kilpatrick et al., 2001; Ni & Zhou,
2005). All five articles of this special issue address precisely this
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abstract conceptualization of number: Participants are asked to
compare decimals (Kelley & Rittle-Johnson) and fractions (DeWolf
& Vosniadou, McMullen et al., 2015; Torbeyns et al., 2015); and
place fractions on the number line (Torbeyns et al., 2015). It is only
in this abstract context that numbers can be understood as densely
ordered (McMullen et al., 2015). Furthermore, this kind of
abstraction is required in order to eventually conceptualize rational
numbers as a unified number system (Kilpatrick et al., 2001), which
is necessary in order to assign more than one type of numbers to
real variables and judge the effect of operations with unknown
numbers (Van Hoof et al., 2015).

Moss's (2005) summary illustrates nicely two main points that
are relevant to the articles of this special issue: Rational numbers
are difficult for students, because a lot of new material has to be
learnt, and the content is highly complex (even without consid-
ering the vast variety of related applications). Furthermore, prior
knowledge and experience with natural numbers is not always
supportive of rational number learning, a phenomenon noticed,
studied, and reported by many mathematics education researchers
(see the studies cited in Kilpatrick et al., 2001; Moss, 2005; Ni &
Zhou, 2005; Vamvakoussi, Vosniadou, & Van Dooren, 2013), far
before the term “whole number bias” was coined by Ni and Zhou.
Thus, Torbeyns, Schneider, Xin, and Siegler (2015) are right in
arguing that natural number knowledge interference is one, but not
the only source of difficulty in rational number learning — and let
me add that the brief summary above indicates that the picture is
even more complicated than depicted in their article. There is no
doubt, however, that natural number knowledge interference is
one major source of conceptual difficulties.

3. Theoretical framing of the contributions

The idea of a whole or natural number bias (hereafter, natural
number bias) is closely related to the problem of restructuring a
prior knowledge base that cannot adequately support a new, and in
many ways incompatible, number perspective (Ni & Zhou, 2005;
Vamvakoussi, Van Dooren, & Verschaffel, 2012); it is thus related
to conceptual change perspectives on the development of rational
number knowledge. With the exception of Torbeyns et al. (2015), all
contributions are framed in conceptual change terms, focusing on
the differences between natural and rational numbers, and study-
ing the complex interactions between students' prior knowledge
and the information about rational numbers coming from in-
struction. Since my view on the matter is expressed in detail else-
where (e.g., Vamvakoussi & Vosniadou, 2010), and since conceptual
change perspectives are also addressed by the contributors, I will
focus on the theoretical position of Torbeyns et al. who advocate a
different, albeit not incompatible idea. Specifically, Torbeyns et al.
focus on the similarities, rather than the differences, between
natural and rational numbers. Adopting the integrated theory of
numerical development (Siegler, Thompson, & Schneider, 2011),
they in fact address the question “what makes natural and non-
natural numbers members of the same category, the category of
number?” Their answer is “magnitude”. Thus numerical develop-
ment is described as a process of progressively broadening the class
of numbers that are understood to possess magnitudes, are subject
to ordering, and can be assigned specific locations on number lines.
Siegler et al. made two assumptions: a) fractions are crucial for
overall mathematical understanding, and b) understanding mag-
nitudes is crucial for understanding fractions, which is also tested-
and supported-by Torbeyns et al. in the present cross-cultural
study.

Let me start by saying that I find the idea of exploiting the deep
similarities between natural and rational numbers valuable,
particularly in terms of educational implications (Vamvakoussi

et al., 2013). In fact, this idea has been systematically explored by
several mathematics education researchers (e.g., Behr, Harel, Post,
& Lesh, 1994; Sophian, 2004; Steffe & Olive, 2010). It is also hard
to disagree that magnitude is an essential part of the meaning of
number in an abstract context. Yet there is another, possibly more
fundamental, commonality, between natural and rational numbers,
namely the notion of the unit. The use of the unit differentiates
between judgments regarding unquantified and quantified quan-
tities and is thus instrumental for the development of number
concepts (Sophian, 2008). The ability to choose or construct
appropriate units is considered fundamental for the development
of rational number concepts (Harel & Confrey, 1994), notably for the
understanding of fraction as measure. And although this fact is
often overlooked, the notion of the unit is also essential for natural
numbers as well (e.g., Sophian, 2004).

Number magnitude depends crucially on the unit. I believe that
this fact is reflected in the findings of Torbeyns et al. (2015). Indeed,
one might ask, why is fraction magnitude estimation on the
number line (particularly on the 0—5 number line) more difficult
than fraction comparisons, and a better predictor of overall math-
ematical achievement? [ would argue that this is because it requires
understanding of the role of the unit. This is essential in concrete
contexts, such as measurement (Nunes & Bryant, 1996); and more
so in abstract ones, such as placing a fraction on the number line. |
would not be surprised if several students in the sample of Tor-
beyns et al. treated the length corresponding to 5 as the unit (see
also Ni, 2000).

This said, it is valuable to have research-based evidence that
fraction understanding correlates with overall mathematical
achievement. One possible explanation of this finding is the
pervasiveness of rational number ideas in the curriculum. Rational
numbers are an important part of what Vergnaud (1994) termed
“multiplicative conceptual field” that includes notions ranging from
basic ones such as multiplication and division, to highly sophisti-
cated ones such as n-linear functions. The elements of the multi-
plicative conceptual field are interrelated, and there is wide variety
of mathematical concepts that relate to this field within as well as
outside school settings. For instance, proportionality, geometrical
similarity, and probability all pertain to the multiplicative concep-
tual field (see Lamon, 2006, for a detailed discussion). Acknowl-
edging the interconnections between rational number ideas and a
wide variety of mathematical notions, many of which are taught at
school, one can expect that fraction understanding is important for
students’ mathematical achievement in different countries
(Torbeyns et al., 2015) — and arguably for students’ achievement in
physics and chemistry, as well.

I would agree with Torbeyns et al. (2015) that conceptual change
perspectives focus on a particular (and indeed limited) aspect of the
development of rational number knowledge. However, such per-
spectives (notably, the framework developed by Vosniadou and
colleagues, and presented by DeWolf & Vosniadou, 2015) provide
detailed accounts of the basis of the natural number bias; pre-
dictions of what happens when prior knowledge interacts with
new information-and these predictions become more refined (e.g.,
Van Hoof, Vandewalle, Verschaffel, & Van Dooren, 2015), as there is
now a substantial body of prior research; descriptions and expla-
nations of students' conceptions and how these change (or do not
change) with instruction (e.g., Kelley & Rittle-Johnson, 2015;
McMullen, Laakkonen, Hannula-Sormunen, & Lehtinen, 2015). In
fact, intense research from this perspective has put forward several
aspects of the natural number bias, which I will discuss in the
following section.

The integrated theory, on the other hand, has a more ambitious
goal, is a more recent attempt, and thus has more questions to
address, in particular how do students come to conceptualize
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natural and non-natural numbers as abstract entities with magni-
tudes that can be ordered and placed on number lines? At the
moment, the integrated theory does not account for the process of
development of this understanding. By the fact that the con-
straining role of natural number knowledge is also acknowledged, I
take it that the “progressive broadening” of the category of number
is not deemed linear and smooth (consistently with conceptual
change perspectives). But if continuity in the shift from natural to
rational numbers is also to be assumed, then the specific aspects of
natural number knowledge that serve as stepping stones should be
accounted for. For instance, does the notion of the unit indeed play
a crucial role in this process, as argued above?

From an educational point of view, the integrated theory invests
on the aspect of fraction as measure. [ strongly agree with this idea
(Vamvakoussi & Vosniadou, 2012). However, I would also like to
note that this is not the only possible trajectory to fraction learning.
Extensive empirical research is required in order to evaluate this
proposal, also against alternative proposals (e.g., Confrey, Maloney,
Nguyen, Mojica, & Myers, 2009; Moss, 2005), especially when it
comes to the introduction of fraction ideas to young children.

Either from a basic research perspective, or in terms of educa-
tional implications, it appears that the integrated theory (Siegler
et al,, 2011; Torbeyns et al., 2015) has the potential to develop an
interesting and fruitful research agenda.

4. Five aspects of the natural number bias
4.1. Filter of incoming information

This aspect was, in fact, a defining feature of the bias, according
to Ni and Zhou (2005): “The whole number bias thus refers to a
robust tendency to use the single-unit counting scheme to interpret
instructional data on fractions” (p. 28). This definition is most
relevant to the framework theory approach to conceptual change-
presented in detail by DeWolf and Vosniadou (2015)-since it as-
sumes a knowledge structure that is used as a basis for interpreting
information coming from instruction. Because prior knowledge and
new information are not compatible, new information on rational
numbers may be neglected or distorted. Distortions are the cause of
synthetic conceptions (Vamvakoussi & Vosniadou, 2010), such as
that “the smaller the components, the bigger the fraction” (DeWolf
& Vosniadou, 2015).

4.2. Source of systematic errors

This is probably the most typical aspect of the bias: For every
difference between natural and rational numbers, there is a source
of systematic errors, due to the fact that students draw on their
natural number knowledge to deal with the tasks at hand. This
aspect of the bias is, I believe, amply covered by all contributors.

4.3. Of intuitive character

Researchers in the area of conceptual change in general, and of
conceptual change in the shift from natural to rational numbers in
particular, have noticed that more often than not, students feel
overconfident or experience an illusion of understanding precisely
when they are heavily biased (Merenluoto & Lehtinen, 2004); and it
is precisely the misconceptions that are accompanied with a feeling
of certainty that are the most resistant to instruction (Kelley &
Rittle-Johnson, 2015). In my research, I have sometimes encoun-
tered the “wait a minute!” reaction by students who provided a
“biased” answer first, and then revised it themselves. In other cases,
students remain insensitive to hints that are intended to make
them reconsider their incorrect answers. Consider, for example,

one of the experiments reported in Christou and Vosniadou (2012)
who were the first to investigate this bias in students' dealing with
algebraic expressions: Eight tenth graders (older than the in-
terviewees of the study by Van Hoof et al.,, 2015) were asked to
judge the validity of a series of inequalities. These students either
substituted the variables with natural numbers only, or referred to
natural number properties, similarly to Van Hoof et al.'s partici-
pants; they did not question the correctness of their responses,
even after two hints by the interviewer. Finally, they were explicitly
asked whether it would be possible to substitute the variables with
non-natural numbers; they immediately recognized this as a pos-
sibility, and they even seemed a bit surprised that this idea hadn't
occurred to them before.

Such features of the bias are captured by Fischbein's (1987)
account of intuitive knowledge in science and mathematics. For
Fischbein, intuitions are based on complex knowledge structures,
formed by in and out-of school experience; they serve as basis for
inferences that go beyond the information at hand; and they allow
for an immediate and integrated grasp of a situation. Intuitive
judgments are fast and appear to be self evident, without the need
for further justification. Finally, once established, intuitions are
robust and not easily eradicated by instruction — and sometimes
co-exist with mathematically correct ideas throughout a person's
life. As argued elsewhere (Vamvakoussi et al., 2013), there are
several similarities between the framework theory approach to
conceptual change (DeWolf & Vosniadou, 2015) and Fischbein's
account of intuitions.

Recently, it has been conjectured that the natural number bias
has the features of intuitive knowledge. Reaction time studies,
based on the distinction between intuitive and analytical reasoning
in the frame of dual-process theories, can capture two features of
the intuitive character of the natural number bias, namely imme-
diacy and perseverance, particularly in adult populations
(Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013;
Vamvakoussi et al., 2012; Van Hoof, Lijnen, Verschaffel, & Van
Dooren, 2013). The idea is that natural numbers and their proper-
ties “come to mind first”, in the incongruent and also in the
incongruent cases, for natural as well as rational number tasks.”
Thus intuitive judgments emerge first, and lead to correct re-
sponses in congruent tasks. In incongruent tasks, however, they
either lead to incorrect responses, or to correct responses that take
longer, because analytical reasoning is required for the initial
response to be inhibited.

DeWolf and Vosniadou (2015) argue that this perspective on the
bias is not theoretically sound. I would certainly agree with DeWolf
and Vosniadou that intuitive reasoning is not the source of the
natural number bias. I would rather argue that precisely because of
the complex developmental-learning process that DeWolf and
Vosniadou refer to, natural number knowledge acquires the intui-
tive character described above. Because human reasoning is often
intuitive in nature, the bias will occasionally manifest itself,
sometimes in an error, sometimes in a time-consuming attempt to
inhibit the initial intuitive response, and sometimes as illusion of
understanding, depending on the task at hand, the individual's
familiarity with the task, and their level of engagement.

2 I feel this clarification is necessary, because DeWolf and Vosniadou (2015) seem
to suggest that the dual-process perspective on reasoning is consistent with the
idea that intuitive reasoning is applied in natural number tasks, whereas analytical
reasoning operates in rational number tasks.
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4.4. Distractor in the mental representation of fraction magnitude

More recently, the natural number bias has been linked to
fraction magnitude representation. Specifically, componential
processing of fractions, mainly in comparison tasks, was deemed a
manifestation of the bias. Bonato, Fabbri, Umilta, and Zorzi (2007)
were the first to put forward this claim. They used comparison
tasks targeted on unit fractions with single-digit denominators and
found that adults processed these fractions componentially, that is,
they assessed the magnitude of the denominators and not of the
whole fraction (tested using the distance effect and the SNARC ef-
fect paradigm). They concluded that “skilled participants (...) do
not automatically [emphasis added] access the real number that the
fraction represents” (p. 1417), even for the simplest of fractions, that
is, the inverses of single-digit natural numbers. Now why would
this be a manifestation of the natural number bias? From this
perspective, a person who answers that “1/6 is bigger than 1/5,
because 6 is bigger than 5” and a person who answers that “1/5 is
bigger than 1/6, because 5 is smaller than 6” are equally biased.
According to Bonato and colleagues, this indicates that educated
adults still rely “on a system based on exact, integer numbers even
for a stimulus that is intrinsically non-integer” (p. 1411).

Note that Bonato et al. attempted to challenge Gallistel and
Gelman's (2000) claim that there is a unique primitive, non-
linguistic, system of quantity representation that works with
continuous quantities and represents quantitative information
about discrete and as well as continuous quantities. It should be
stressed that this primitive system is not assumed to represent
initially numbers in their symbolic form. An interesting question
then is, does it serve as basis for further numerical development?
Consistently with the hypothesis of Gallistel and Gelman, evidence
coming from numerous studies (see Schneider & Siegler, 2010, for a
synopsis) indicates that an analog mental representation, akin to a
number line, is used for the representation of natural numbers (also
in their symbolic form). Given that rational (and also real) numbers
could be, in principle, represented by such a mental representation,
Bonato et al., similarly to DeWolf and Vosniadou (2015), reasoned
that this would imply that accessing fraction magnitudes should be
easy and direct, explicitly using the word automatic. Automaticity
is, arguably, a very strong constraint (and is not adequately
addressed by Bonato et al.).

At this point, it is worth using a distinction, made by Tzelgov and
colleagues (e.g., Kallai & Tzelgov, 2009; 2011; Tzelgov, Ganor-Stern,
Kallai, & Pinhas, 2013). These researchers distinguish between
primitive and non-primitive representations of number. The term
primitive refers to numbers whose magnitude is assumed to be
stored in long-term memory and thus can be holistically retrieved
in one step; non-primitive, one the other hand, refers to numbers
whose magnitude is mentally computed or estimated via the use of
their components, rather than accessed directly. According to
Tzelgov and colleagues, primitives are empirically identified on the
basis of the distinction between automatic and intentional pro-
cessing, where automaticity is defined as processing without
conscious monitoring; and tested mainly within STROOP-like
research paradigms (e.g., using the size congruency effect). With
this very clear-and quite strict view-on automaticity, Tzelgov and
colleagues conducted a series of studies. Their findings indicate that
only the mental representations of single-digit natural numbers
can be considered as primitives; two-digit natural numbers, deci-
mals, and negative integers require componential processing
(Tzelgov et al., 2013). As far as fractions are concerned, it appears
that the magnitudes of individual fractions are not automatically
retrieved from long-term memory; however, there appears to exist
a primitive representation of fraction as an entity “smaller than
one” (Kallai & Tzelgov, 2009) — quite consistent with the part-

whole aspect of fraction, and the corresponding misconception of
many students.

With this distinction in mind, it appears that Bonato et al.'s
(2007) study addresses the issue of direct, automatic accessing of
fraction magnitudes; their results indicate that even the simplest
fractions are not spontaneously processed holistically, a finding
consistent with the findings by Kallai and Tzelgov (2009).
Schneider and Siegler (2010) argued that the result of Bonato et al.
is an artifact of their research tasks, and conducted a series of ex-
periments using a wider variety of fraction comparisons. They
found that adults were able to represent fractions on the mental
number line (based on the distance effect). Schneider and Siegler's
study, although framed as a response to Bonato et al., actually ad-
dresses a different question, namely can adults access the inte-
grated magnitude of fractions? Not unexpectedly, they can (see also
Meert, Grégoire, & Noél, 2010a, 2010b, for 10- and 12-year olds;
DeWolf & Vosniadou, 2015). An extensive literature on comparison
strategies provides information as to how people do it (I am skip-
ping strategies that circumvent the problem of estimating the
magnitude, such as cross-multiplying of the components): bench-
marking to 1/2 and 1, or other familiar numbers; residual thinking
(i.e., comparing the complementary fractions); estimating the ratio
between nominator and denominator; converting the fraction in its
decimal form; combinations of the above and other strategies, that
may not be documented. In fact, people who are competent in this
domain use strategies that are tailored to the task at hand.> The
picture then becomes more complicated: Sometimes people will
not go in the trouble of compiling the magnitude of the fractions,
when they can rely on their components. Sometimes accessing the
integrated magnitude of fractions coexists with componential
processing; and, interestingly, the magnitude of the components, in
particular of the denominators, is found to interfere with the pro-
cess of accessing the integrated magnitude (tested by Meert et al.,
2010Db, using a priming effect paradigm).

So, is componential processing a manifestation of the whole
number bias? In a sense, it is. Consider a special case, unit fractions
with single-digit denominators: If the magnitudes of the de-
nominators are indeed automatically activated (Tzelgov et al.,
2013), then the individual cannot help the interference of the
components in the process of accessing the fraction magnitude,
resulting to slower response times, and possibly more errors. This
effect might be then intrinsically tied to the way that fractions are
represented symbolically, namely as two natural numbers, sepa-
rated by a bar; and it might have a more drastic constraining effect,
than delaying fraction comparison tasks. Consider the study by
Kallai and Tzelgov (2011): Educated adults learnt arbitrary, unitary
symbols for unit fractions from 1/2 to 1/8, after intensive 4-h
training; then, the mental representation of fraction magnitudes
were accessed automatically when presented with the arbitrary
symbols, but not with the usual symbols. As Kallai and Tzelgov
concluded, although the integrated magnitude of specific fractions
can be represented holistically in long term memory, their natural

3 This makes the design of research instruments rather challenging: For instance,
the use of 1/2 and 1 as benchmarks was not expected by Schneider and Siegler
(2010) and Obersteiner et al. (2013). DeWolf and Vosniadou (2015) have the un-
expected result that Greek participants performed better and faster in the incon-
sistent condition. Taking a closer look at the tasks, one might notice that many
inconsistent ones (but not so for congruent ones) have the following characteristic:
The distance between the nominators is “small” (in fact, equal to 1 in more than
half of the tasks), whereas the difference between the denominators is considerably
“larger” (for example, 12/29 vs. 11/18). My strategy for such pairs is based on the
idea that I'm getting more or less the same number of “pieces”, but the “pieces” are
much smaller in the first case (12/29). Of course, this strategy does not work in the
general case, but in the inconsistent tasks in question, it always does; and it allows
for faster, and accurate, processing of the inconsistent tasks.
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number components “interfere with their processing and in fact
dominate automatic processing” (p. 9).

If this is the case, then componential processing could be
considered as yet another manifestation of the natural number bias,
albeit in a slightly different sense than Bonato et al. (2007), and also
DeWolf and Vosniadou (2015) intended: The very fact that the
symbolic representation of fractions depends on the symbolic
representation of natural numbers prevents the magnitudes of the
simplest unit fractions from becoming primitives, like one-digit
natural numbers.

Would this aspect of the bias then be evidence against the claim
put forward by Gallistel and Gelman (2000), as Bonato et al. (2007)
and DeWolf and Vosniadou (2015) argue? Before this question can
be answered, background assumptions about what automaticity is
have to be explicitly stated; and specific predictions about the kind
and the range of numbers that could be automatically processed
should be formulated. To my understanding, evidence that only the
magnitudes of single-digit numbers are primitives (Tzelgov et al.,
2013) is more threatening to Gallistel and Gelman's hypothesis,
since it is more consistent with the hypothesis that there are core
systems that deal with small numerosities (e.g., Le Corre & Carey,
2007).

4.5. Facilitator

Associating the natural number bias with the adverse effects of
prior knowledge on further learning (e.g., systematic errors, illu-
sion of understanding) may overshadow its most fundamental
aspect, namely that it acts as a facilitator in a wide variety of in
and out of school situations. In this special issue this aspect is
discussed as the tendency for higher accuracy and lower reactions
times in tasks that are compatible with natural number reasoning
(DeWolf & Vosniadou, 2015; Van Hoof et al,, 2015). In a more
general fashion, the facilitator aspect illustrates the value of
entertaining a bias of this nature: It allows for immediate judg-
ments, provides a sense of coherence, and satisfies “the funda-
mental need of human beings to avoid uncertainty” (Fischbein,
1987, p. 28).

5. A note regarding instruction

The facilitator aspect of the natural number bias is typically
exploited in instruction. This is why fractions are commonly
introduced via their part-whole aspect (Moss, 2005); why young
students are taught the double-count technique, that is, to count
all equal parts in a pre-divided whole and then count the indicated
shaded parts (Kieren, 1992); and why French teachers were
instructed to present, for instance, 3.25 as 325 with one hun-
dredth as the unit (Brousseau, 2002). Such approaches initially
facilitate students’ encounter with non-natural numbers, but they
clearly “do not mind the gap” between the natural and the rational
number perspective. Although familiar to researchers interested in
the development, learning, and teaching of rational number con-
cepts, this idea has not yet made its way to the classrooms.
Considering the deep similarities together with the important
differences between natural and rational numbers is a promising
approach in order to narrow the gap between students' concep-
tions of numbers, and rational numbers. This proposal requires a
long-term perspective on the planning of instruction and exten-
sive empirical validation. Importantly, it also requires from
teachers to be convinced that the attempt to make rational
number “too easy” for students by building on superficial simi-
larities between natural and rational numbers does not pay off in
the long-run.
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