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breaks, no matter how much it is stressed”) with the aim of 
bringing the notion of density within the grasp of second-
ary students.
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1 Introduction

The relation between psychology and mathematics educa-
tion has been long standing. Many psychologists turned 
to mathematics as an appropriate domain to put theories 
of learning and development to the test–one can think of 
Thorndike and Piaget, for example. On the other hand, 
mathematics education researchers turned to psychology 
for theoretical accounts of mathematics learning that could, 
for example, explain students’ difficulties in mathematics, 
describe the processes underlying mathematical reasoning 
and problem solving, and predict contextual influences on 
learners’ mathematical behaviour (e.g., task features that 
elicit different responses) (Schoenfeld 1987).

However, the relation between psychology and math-
ematics education has not been uncontested. For example, 
it has been argued that psychological theories are misinter-
preted and misapplied in the context of mathematics educa-
tion (see, for example, Anderson et al. 2000). On the other 
hand, mathematics education researchers came to see the 
cognitive perspective as too restricted and failing to capture 
the complex phenomena of learning and teaching math-
ematics in the classroom; furthermore, the research agenda 
of the field broadened to include topics such as the socio-
political context of learning and teaching mathematics 
that do not usually pertain to psychological research (Kil-
patrick 2014). On top of that, in their attempts to establish 

Abstract The problem of adverse effects of prior knowl-
edge in mathematics learning has been amply documented 
and theorized by mathematics educators as well as cogni-
tive/developmental psychologists. This problem emerges 
when students’ prior knowledge about a mathematical 
notion comes in contrast with new information coming 
from instruction, giving rise to systematic errors. Concep-
tual change perspectives on mathematics learning suggest 
that in such cases reorganization of students’ prior knowl-
edge is necessary. Analogical reasoning, in particular 
cross-domain mapping, is considered an important mech-
anism for conceptual restructuring. However, the use of 
analogies in instruction is often found ineffective, mainly 
because the structural similarity between two domains is 
obscure for students. To deal with this problem, John Clem-
ent and his colleagues developed the bridging strategy that 
uses multiple analogies to bring students to pay attention 
to the structural similarity that often goes unnoticed. This 
paper focuses on the cross-domain mapping between num-
ber and the (geometrical) line that has been instrumental 
in the development of the number concept. I summarize 
findings of a series of studies that investigated students’ 
understandings of density in arithmetical and geometrical 
contexts from a conceptual change perspective; and I dis-
cuss how this research-based evidence was used to design 
an intervention study that used the analogy “numbers are 
points on the number line”, and a bridging analogy (“the 
number line is like an imaginary rubber band that never 
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mathematics education as a scientific discipline in its own 
right, mathematics education researchers set to develop 
their own theoretical models and research methodolo-
gies, turning away from cognitive psychology (De Smedt 
and Verschaffel 2010). As a result, there is currently great 
discrepancy between the research foci of psychology and 
mathematics education even when it comes to mathemat-
ics thinking and learning, where larger overlap could be 
expected (Berch 2016). Recently, however, there appears to 
be a renewed interest in bridging research on mathemati-
cal cognition and development, and mathematics education 
(e.g., Alcock et al. 2016).

In this article I attempt to illustrate the possibility of pro-
ductive bridging between psychological and educational 
research. I will present an overview of a series of stud-
ies that investigated students’ understanding of the dense 
ordering (hereafter, density) of rational numbers. These 
studies were grounded on a conceptual change approach to 
learning (Vosniadou et al. 2008), taking a cognitive-devel-
opmental perspective on the acquisition of rational number 
knowledge. They resulted in the design of an experimen-
tal intervention that systematically employed principles 
for instruction stemming from conceptual change perspec-
tives on learning, notably the use of bridging analogies and 
other analogies to foster students’ understanding of a highly 
counter-intuitive idea. I will highlight the relevance of such 
studies for mathematics education while also discussing 
their limitations from the point of view of instruction.

2  The problem of conceptual change 
in the development of rational number 
knowledge

One of the most well-established findings coming from 
research on learning in the fields of psychology and edu-
cation is that prior knowledge plays a very important role 
in further learning. Attempts have been made to communi-
cate insights about this issue also to educators (Bransford 
et  al. 2000; Donovan and Bransford 2005). Of particular 
interest are the adverse effects of prior knowledge. These 
typically occur when the new content to be learnt is incom-
patible with what the learner already knows. In such cases 
prior knowledge hinders rather than supports new under-
standings. An exemplary case is the transition from natu-
ral to non-natural numbers. Interference of natural number 
knowledge in rational number learning has been studied 
by mathematics educators (e.g., Brousseau 2002; Fisch-
bein 1987; Moss 2005) as well as by cognitive and devel-
opmental psychologists (e.g., Hartnett and Gelman 1998; 
Smith et al. 2005), and has recently attracted the attention 
of neuro-psychologists as well (e.g., Jacob et  al. 2012). 
This phenomenon is so pervasive that it has been termed 

whole or natural number bias (Ni and Zhou 2005; Vam-
vakoussi et  al. 2012). The bias manifests itself in various 
ways, including systematic errors and misconceptions (e.g., 
Longer decimals are bigger, multiplication always makes 
bigger); faster and more accurate responses to tasks that 
are compatible with natural number knowledge, but oth-
erwise slower and less accurate responses; and unjustified 
feelings of certainty when incorrect responses are provided 
to incompatible tasks (see Vamvakoussi 2015, for a brief 
overview of the different aspects of the natural number 
bias).

The transition from natural to rational numbers has 
been acknowledged as one that requires conceptual change 
(Ni and Zhou 2005; Smith et  al. 2005; Vamvakoussi and 
Vosniadou 2010; Vosniadou et al. 2008). In the context of 
educational research, the term conceptual change refers to 
the process of knowledge restructuring that is necessary 
when one is exposed to information that is not compat-
ible with one’s prior knowledge (Schneider et  al. 2012). 
The conceptual change perspective on learning has been 
prominent in science education research. Science education 
researchers were interested in how concepts change in the 
process of learning science under instruction (see the semi-
nal paper by Posner et  al. 1982), with a view to account 
for, and address, the phenomenon of students’ systematic 
misconceptions. In 2004, an attempt was initiated to take 
a conceptual change perspective on mathematics learning 
(Verschaffel and Vosniadou 2004). A specific approach to 
conceptual change, namely the framework theory approach 
(Vosniadou et  al. 2008), originally developed to explain 
students’ conceptual difficulties in science learning, has 
since been fruitfully applied in the area of mathematics 
learning (see Vamvakoussi et al. 2013, for an overview of 
related research). A key assumption of this approach is that 
from early on children organize their interpretations of eve-
ryday experiences into few, relatively coherent conceptual 
structures termed framework theories. Framework theories 
allow children to generate explanations for various phe-
nomena, make predictions, and deal with unfamiliar situ-
ations. One such framework theory pertains to the domain 
of number. Indeed, evidence stemming from cognitive-
developmental research indicates that, in the context of 
lay culture, preschoolers have already formed a principled 
understanding of numbers as counting numbers, which is 
further enriched and strengthened by early instruction that 
focuses on natural numbers (Gelman 1990, 2000; Ni and 
Zhou 2005; Smith et al. 2005). Thus, before being exposed 
to rational number instruction, students have constructed 
rather structured framework theories of number which are 
based on informal and formal experiences of natural num-
ber features and properties, and shape their beliefs and 
expectations about what numbers are and how they func-
tion (see Vamvakoussi and Vosniadou 2010, for a detailed 
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account of students’ framework theories of number). When 
non-natural numbers are introduced in the curriculum, 
practically every background assumption of these theo-
ries is no longer valid. In their attempts to make sense of 
non-natural numbers, students draw heavily on their prior 
knowledge about natural numbers, which results in system-
atic errors precisely in tasks that touch upon the differences 
between the natural and the rational numbers.

Restructuring the initial framework theories of number 
is a challenging and time-consuming process, because it 
involves the revision of a system of interrelated ideas about 
numbers that requires (among others) re-evaluation of 
deeply entrenched assumptions (e.g., numbers are discrete); 
ontological shifts (e.g., natural and non-natural numbers are 
members of the same category); representational changes 
(e.g., from the number sequence, to dense intervals); and 
re-evaluation of numerous procedures and strategies that do 
not apply to rational numbers (e.g., the value of a decimal 
number cannot be judged by the number of its digits).

Thus the problem of conceptual change in the transi-
tion from natural to rational numbers presents mathematics 
educators with a big challenge. The question arises whether 
principles for instruction stemming from conceptual 
change perspectives on learning can be useful for instruc-
tion aiming at addressing this major source of difficulties 
for students.

Conceptual change perspectives on learning have 
been initially associated with cognitive conflict as a main 
instructional strategy. The central component of this strat-
egy is to confront students with information that contra-
dicts their current ideas. Although sometimes effective, 
this strategy has been criticized on several grounds (Limón 
2001; Merenluoto and Lehtinen 2004; Smith et  al. 1993). 
For example, it has been pointed out that what constitutes 
a conflict from the point of view of the teacher is not nec-
essarily perceived as such by the students, because they 
may neglect or misinterpret the contradictory information 
(when, for example, they are not fully aware of their own 
ideas or when they are overconfident in them); that it is 
not easy for all students to handle cognitive conflict pro-
ductively, because it requires substantial effort that a stu-
dent might not be motivated to put into this task; and that 
inducing cognitive conflict may create feelings of uncer-
tainty, or even frustration, that some students find difficult 
to handle. It was thus acknowledged that cognitive conflict 
should be used with caution. Moreover, it was also realized 
that teaching for conceptual change is a complex enterprise 
that cannot rely solely on cognitive conflict. Several princi-
ples for instruction aiming at conceptual change have been 
put forward and tested (e.g., Vosniadou et  al. 2001). This 
paper focuses on the use of analogies in instruction aiming 
at conceptual change, in particular on the bridging analogy 
approach. This approach has been proposed as a strategy 

that fosters conceptual change by building on students’ pro-
ductive ideas instead of emphasizing their misconceptions, 
and has been implemented in the context of science educa-
tion with positive outcomes (Clement 2008).

In the following the theoretical underpinnings for the 
value of analogical reasoning in conceptual restructuring 
as well as its relevance for mathematics learning will be 
discussed, with focus on the development of the number 
concept.

2.1  Analogical reasoning and conceptual change

Analogical reasoning relies on the comparison between two 
systems that can belong to the same, to similar or to differ-
ent domains, and are perceived as similar in some respects. 
The one deemed more familiar to the individual is termed 
“the source”, while the less familiar one is termed “the 
target”. Analogical reasoning involves mapping between 
the source and the target, that is, finding correspondences 
between the two systems. If a solid match is accomplished, 
based on structural rather than superficial similarities, then 
knowledge of the source can be employed productively 
to draw inferences about the target. Analogical reasoning 
is acknowledged by psychologists as well as mathematics 
educators as a process than can trigger the generation of 
hypotheses about an unfamiliar situation, serve as a source 
of problem-solving strategies and, more generally, as an 
aid to discovery and learning. (e.g., English 1997; Gentner 
et al. 1997).

Cross-domain mapping is considered a “bootstrapping 
process” that supports learning when what is to be learned 
transcends what is already known not merely in a quantita-
tive, but also in some qualitative way (Carey 2004; Smith 
et  al. 2005); and, importantly, as a mechanism for con-
ceptual restructuring, since in the process of comparing 
the source and the target, either or both domains may be 
re-organized to improve the match (Gentner et  al. 1997; 
Gentner and Wolff 2000; Vosniadou 1989).

Cross-domain mapping, especially between physical 
quantity and number, is an extremely important mechanism 
for the development and restructuring of number concepts 
in the individual (Resnick and Singer 1993; Siegler 2016; 
Smith et al. 2005). For example, Smith et al. (2005) argue 
that cross-domain mapping between physical quantity and 
number can bring children to see numbers as infinitely 
divisible.

Cross-domain mapping has been also been instrumental 
for the development and restructuring of mathematical 
knowledge in the context of discovery. Taking a strong 
position, Núñez and Lakoff (2005) argue that practically all 
mathematical ideas rely on cross-domain mappings from 
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one conceptual domain to another which they call concep-
tual metaphors. 1 A prominent example of cross-domain 
mapping in the history of mathematics is the complex 
interplay between arithmetic and geometry (Dantzig 2005). 
The central concept of arithmetic, namely number, and the 
straight line, started as two radically different objects of 
study (numbers were deemed discrete, while the line was 
deemed the exemplar of continuity), and ended up related 
by the numbers-to-points correspondence. The comparison 
between number and the line, acting interchangeably as 
source and target domains has been associated with the 
development of powerful mathematical ideas and tools, 
such as analytic geometry and the calculus, and was instru-
mental in the development and formalization of the con-
cepts of number, infinity, and continuum. In this process, 
the concept of number as well as of the line underwent rad-
ical changes of meaning: The category of number, initially 
including only the natural numbers, changed to encompass 
non-natural numbers; and the straight line was reconceptu-
alised as set of points (Lakoff and Núñez 2000; see also; 
Vamvakoussi and Vosniadou 2012).

Analogies that rely on the comparison between two dif-
ferent domains are pervasive in mathematics instruction. A 
prominent example is the use of concrete or graphic/dia-
grammatic representations of abstract mathematical ideas 
(English 1997). Consider, for example, that the main exter-
nal representations for natural numbers in the early years 
build on the mapping between physical (discrete) quantity 
and number, via the act of counting. Consider also that the 
analogy “numbers are points on the line”, a product of the 
long-term comparison between the domains of arithmetic 
and geometry, underlies an extensively used representation 
of numbers in today’s mathematics classrooms, namely the 
number line.

With this last example in mind, it can be noted that anal-
ogies used (explicitly or implicitly) in mathematics instruc-
tion can be of a very abstract nature, rich in very elabo-
rate meanings, and thus not readily accessible to students. 
Indeed, despite the fact that analogical reasoning is a fun-
damental aspect of human cognition that is employed spon-
taneously even by young children to make sense of unfamil-
iar phenomena, it has been amply documented that when 
people are presented with specific analogies and asked to 
use them, they fail to a considerable extent (Duit 1991; 
Dunbar 2001). This phenomenon becomes a problem when 
it comes to analogies used in instruction. There are several 
reasons why the use of analogies in instruction does not 

1 There is a debate regarding the relation between analogy and meta-
phor. It is beyond the scope of this paper to enter this discussion. Fol-
lowing Bowdle and Gentner (2005), we take (conceptual) metaphor 
to be a species of analogy.

always yield the expected results (Clement 2008): Some-
times the analogies used are simply not appropriate. Other 
times, however, the source is not as familiar to students as 
expected; or students may interpret it on the basis of their 
initial ideas that are not consistent with the intended sci-
entific ideas. Often, the relational similarities between the 
source and the target are not transparent to students. It thus 
appears that extensive support is required in instruction for 
students to be able to use the intended analogy productively 
(Richland et al. 2007).

Clement and colleagues (e.g., Brown and Clement 1989; 
Clement 1993, 2008) proposed the bridging analogies 
teaching strategy that involves the purposeful interpola-
tion between students’ initial understanding of a situation 
and the intended scientific idea of one or more intermediate 
anchoring situations. An anchoring situation is close to stu-
dents’ initial ideas, but is also compatible with the intended 
scientific idea; it is thus expected to trigger a favourable 
intuition, that is, an intuition that can be developed toward 
the understanding of the target situation. For example, in a 
situation where a book lies on a table, students typically do 
not see the table as exerting any force on the book, which 
is a common misconception about acting-reacting forces. 
The researchers designed interventions based on an anchor-
ing example (i.e., a book on a spring) that was followed by 
bridging examples (e.g., a book on foam rubber) until they 
gradually reached the target situation (i.e., the book on the 
table).

The bridging analogies strategy has been extensively 
employed in science education research by Clement and 
colleagues, but also by other research groups (e.g., Bryce 
and Macmillan 2005; Savinainen et al. 2005; Yilmaz et al. 
2006), and has proved fairly successful in bringing students 
to reconsider and revise their initial ideas about scientific 
phenomena that were inconsistent with the scientific view.

In the following I illustrate how an analogy (“numbers 
are points on the line”) together with a bridging anal-
ogy (“the number line as a rubber line”) was used in the 
design of an experimental intervention aiming at fostering 
students’ understanding of the dense ordering of rational 
numbers.

2.2  Tapping into students’ understanding of the density 
property of rational numbers

Unlike natural numbers, rational numbers are densely 
ordered. There are different ways to describe what dense 
order is, all of which are equivalent from a mathematical 
point of view: (a) between any two, non-equal, rational 
numbers there is always another rational number (and, thus, 
there are infinitely many intermediates), (b) no rational 
number has a (unique) successor in the rational numbers 
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set, (c) there is no least positive rational number, and (d) 
rational numbers are infinitely divisible.

Historically, the idea of density emerged in a geometri-
cal context, as a defining property of continuous quantities, 
notably of the straight line. It took centuries before it was 
transferred to the domain of number, and differentiated 
from continuity (see Vamvakoussi and Vosniadou 2012, for 
a more detailed account). Interestingly, the cross-domain 
mapping between number and the line was, as already men-
tioned, instrumental in this respect.

In principle, the density of rational numbers is accessi-
ble via simple procedures that are taught at the elementary 
school. For example, one can always find (some more) frac-
tions between two given fractions (e.g., 2/5 and 3/5) by con-
verting them to equivalent forms (e.g., 4/10 and 6/10); one 
can always find (some more) decimals between two deci-
mals (e.g., 0.5 and 0.6) also by converting them to equiv-
alent forms (e.g., 0.50 and 0.60); and this process can be 
repeated again and again. However, the density property is 
notoriously difficult for students from elementary and sec-
ondary (McMullen et  al. 2015; Merenluoto and Lehtinen 
2002), up to tertiary education (Giannakoulias et al. 2007). 
A repeating finding is that students typically assign the 
property of discreteness to rational numbers, which is inter-
preted as an intrusion of natural number knowledge. In 
the following I summarize a series of studies that looked 
into students’ understandings of density from a conceptual 
change perspective and provided a detailed picture of stu-
dents’ difficulties.

In a series of studies (Vamvakoussi et  al. 2003, 2011; 
Vamvakoussi and Vosniadou 2004, 2007, 2010, 2012) 
we investigated secondary students’ (7th to 11th graders) 
understanding of the density of rational numbers as well as 
of the points on a straight line segment. A variety of tasks 
(see also Van Dooren et al. 2013) was designed to tap into 
students’ understandings, including open and forced-choice 
items; construction of models for numbers, for the number 
line and for the geometrical line; comparison between stu-
dents’ models and models used in instruction; and thought 
experiments (e.g., Imagine that you can become as small 
as a point of the number line. Then you could see the other 
points up close. Suppose that you are on the point that 
stands for the number 2.3. Can you define what point is 
the one closest to you? Describe in words or by drawing a 
picture). These tasks targeted mainly the “infinitely many 
intermediates” and the “no successor” aspect of density 
and were used in qualitative as well as quantitative studies, 
including intervention studies.

As expected, we found clear interference of natural 
number knowledge in the arithmetical context. Specifi-
cally, students responded very frequently that there is a 
finite number (often, zero) of intermediates between two 
rational numbers. In addition, we found that the kind 

(natural/non-natural number) and the representational 
form (fraction/decimal) of the interval end points had 
a strong effect on students’ judgments about the num-
ber of intermediate numbers. More specifically, students 
were more prone to accept the infinity of intermediates 
between two natural numbers than between fractions 
or decimals; they might answer that there are infinitely 
many numbers between two decimals, but a finite num-
ber of intermediates between two fractions, or vice versa; 
they might answer that there are infinitely many interme-
diates, but of the same representational form as the inter-
val end points (i.e., infinitely many decimals between 
decimals, and infinitely many fractions between frac-
tions). These findings suggested that students’ conceptu-
alizations of rational numbers were far from the view of 
the rational numbers set as a unified system of numbers 
that are invariant under different symbolic representa-
tional forms. This interpretation was further corroborated 
by students’ own models as well as verbal descriptions of 
the rational numbers set.

On the other hand, we found that students performed 
better in a geometrical context (Vamvakoussi and Vosnia-
dou 2012). Indeed, students were more likely to answer 
that there are infinitely many points between two points of 
a straight line, than to answer that there are infinitely many 
numbers between two numbers. This finding should not be 
taken to suggest that students had a firm understanding of 
the infinity of points of a line segment. For instance, we 
also found that students were susceptible to variations of 
the segment length (“more points on a longer segment”). 
In addition, the great majority of students described the 
segment as a “necklace of beads” (Sbaragli 2006) or as a 
continuous albeit two dimensional object that gets larger in 
width when it gets magnified. These findings are consist-
ent with the assumption that students do not differentiate 
between the idealized geometrical objects and their physi-
cal representations, a phenomenon that has been noted in 
the literature (e.g., Fischbein 1987). For some students it is 
also possible that when referring to the infinity of points on 
a line segment, they actually refer to a very large number of 
very small entities, like grains of a very fine powder.

What is interesting is that whatever understanding stu-
dents had of the infinity of points in a line segment did 
not transfer to numbers, even when the numbers were pre-
sented on the number line (Vamvakoussi and Vosniadou 
2007, 2012). In fact, sometimes the presence of the number 
line had a negative effect on students’ responses, causing 
them to move from “infinitely many intermediates” in the 
numerical context to “a finite number of intermediates” in 
the presence of the number line. Consider, however, that 
students are from early on exposed in instruction to expe-
riences with the “number track” (i.e., a sequence of num-
bers typically placed in a series of adjacent squares) and the 
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ruler (Doritou and Gray 2009; English 1997), which may 
explain this finding.

Finally, we found that from the students’ point of view, 
the infinity of intermediates was not equivalent to the “no 
successor” principle, neither in arithmetical nor in geo-
metrical context: Students who were on the “infinity of 
intermediates” side could nevertheless believe that there is 
a successor to a given number or point. One could argue 
that this finding again reflects students’ interpretation of 
the expression “infinitely many” as “a very large amount”. 
However, we also had evidence coming from in-depth 
interviews showing that students who actually were able to 
describe a mechanism producing infinitely many numbers 
in an interval, and who even stated that the successor of a 
given number cannot be pinned down precisely because of 
the infinity of numbers, still insisted that there is a succes-
sor (Vamvakoussi 2010). This finding becomes less sur-
prising, if one considers how students reach the conclusion 
that there are infinitely many numbers in a given interval: 
Students typically rely on recursive processes, very similar 
to the ones described above, that consist of discrete steps, 
each step producing a finite number of intermediates. In our 
studies we had the opportunity to witness some students 
reach this conclusion on the spot, presumably because they 
had never been asked this question before. When asked, for 
instance, about the intermediates of 0.2 and 0.3, some stu-
dents typically started by presenting 0.21, 0.22, 0.23, and 
so on, as examples. Then they thought of the possibility 
of adding another decimal digit, and came up with 0.211, 
0.212 and so on. At some point, they realized that they 
can always add another decimal digit. They concluded that 
there are infinitely many intermediates, in the sense that 
there are always more to be found, by adding more deci-
mal digits. This realization, however, does not necessarily 
imply the representation of these numbers as a dense array.

2.3  Using bridging analogies and other analogies 
to foster students’ understanding of density

Based on our insights about students’ prior understand-
ings of density, we looked for the kind of intervention that 
could bring within the grasp of students this notion, par-
ticularly its “no successor” aspect that appeared to be the 
most challenging one. We hypothesized that an interven-
tion building on the cross-domain mapping between num-
ber and the line, via the “numbers are points on the line” 
analogy, could be effective in this respect. The geometrical 
line was selected as source, since it appeared that the idea 
of density was more accessible to students in this context. 
In addition, it would allow us to circumvent the problem 
of interpretation of rational number notation, which was an 
additional challenge for our participants. In fact, the anal-
ogy “numbers are points on the line” has the potential to 

support students’ understanding of rational numbers as 
individual entities, invariant under different forms of rep-
resentation and, eventually, the rational numbers as a uni-
fied system of numbers (Kilpatrick et al. 2001). However, 
it should be evident from the discussion above that there 
was a considerable gap between students’ interpretations 
of the geometrical line, and the sophisticated idea of the 
line as a dense array of points that are not arranged such 
that one is immediately next to the other. Inspired by the 
bridging analogies approach of Clement and colleagues, 
we devised the “rubber line” (i.e., an imaginary elastic line 
that never breaks, no matter how much it is stretched) as a 
bridging device. We reasoned that “the rubber line” could 
be effective because it evokes students’ experiences with a 
real world object, that is, the rubber band; it is consistent 
with students’ experiences with physical representations of 
the number line; it is associated, via the imaginary property 
of being unbreakable, with a recursive process, which is an 
easier way of accessing the notion of infinity for students; 
and, finally, this process produces a sequence of segments, 
rather than a sequence of points that can be deemed dis-
crete. We hypothesized that the “rubber line” has the poten-
tial to help students grasp the idea that points can never be 
found such that one lies next to the other.

This hypothesis was tested in a short, text-based inter-
vention (Vamvakoussi and Vosniadou 2012). We produced 
a text that provided explicit information about the infinity 
of numbers in a specific interval; made explicit reference 
to the numbers-to-points correspondence; and employed 
the analogy of the rubber line to convey the idea that points 
(and numbers) can never be found one immediately next 
the other. The excerpt regarding the bridging analogy reads 
as follows:

How is it possible for all these numbers to be placed 
in the interval between 0 and 1 on the number line? 
Are there enough points available?
The mathematical number line is a strange object. 
You can imagine it as a rubber band that never 
breaks, no matter how much you stretch it. Place 
numbers between 0 and 1, until it looks like you have 
used all the available points. If you stretch the rubber 
band, then you will find out that between the points 
that looked as if there were the one next to the other, 
there are more available points, corresponding to 
more numbers. This procedure can be repeated infi-
nitely many times—don’t forget that your imaginary 
rubber band never breaks! So, there are infinitely 
many points between the points corresponding to 0 
and 1—therefore, there are infinitely many numbers 
between 0 and 1. (p. 284).

We tested experimentally the value of the “rubber line” 
comparing it to two other texts that presented the same 
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information as the experimental text, except for the rub-
ber line bridging analogy that was replaced by examples 
of intermediate numbers in one of the texts, and by figures 
illustrating the examples in the other. Six classes of 8th and 
11th graders (140 students in total) received a pre-test with 
density tasks in arithmetical and geometrical context, tar-
geting the “infinitely many intermediates” aspect of den-
sity; then each class received one of the texts (i.e., one class 
per grade received the experimental text); and finally, they 
received a post-test containing all the tasks of the pre-test, 
and 5 additional tasks that examined whether students were 
able to deal with the “no successor” aspect of density (see 
Fig. 1).

Our results showed that all groups profited from the 
explicit information about the infinity of numbers presented 
in all three texts, improving their performance in the “infi-
nitely many intermediates” items. However, the experimen-
tal group outperformed the other groups in the “no suc-
cessor” items of the post-test. In addition, the students of 
the experimental group were more consistent in providing 
correct answers across contexts (i.e., for numbers, the line, 
and the number line); and more consistent in providing 
explanations for their answers. Their explanations indicated 
that they had employed effectively the ideas underlying the 
rubber line bridging analogy. Consider, for example, the 

following response (in written text) of a student reacting to 
the last task presented in Fig. 1, keeping in mind that, based 
on her responses in the pre-test, this student was clearly on 
the discreteness side before the intervention.

Between 2.001 and 2.002 there are infinitely many 
points. Actually, if we think of the number line, that 
we can stretch (mentally) as much as we like, then we 
understand that it is not possible to make a picture 
showing infinitely many tiny spots between 2.001 and 
2.002. (Vamvakoussi and Vosniadou 2012, p. 279)

To sum up, we designed this intervention on the basis 
of an analogy between two different domains, building the 
intended mathematical idea in the source that we took to be 
more accessible to students, and using a bridging analogy 
to decrease the gap between students’ initial ideas of the 
source and the intended ones. It should be stressed that this 
intervention relied heavily on the insights into students’ 
thinking, gained through our previous studies.

3  Discussion

In this paper I focused on a problem that is relevant to psy-
chology as well as to mathematics education, namely the 

Fig. 1  Tasks targeting the “no 
successor” aspect of density
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problem of natural number interference in rational number 
learning. This problem can be placed in the more general 
frame of the role of prior knowledge in further learning. I 
presented the rationale of an experimental intervention that 
was based on a principle for instruction stemming from 
conceptual change perspectives on learning, namely the use 
of analogies and the bridging analogies strategy to foster 
students’ understanding of ideas that are qualitatively dif-
ferent from their current understandings (Clement 2008; 
Vosniadou et al. 2008).

The study has certain merits: It is theoretically grounded, 
and built upon careful analysis of the targeted mathematical 
concept as well as on research-based evidence of students’ 
understandings of density; it involves the development and 
assessment of a specific instructional tool and it shows that 
this tool can have a positive impact on students’ under-
standing of a highly counter-intuitive concept, even with a 
minimal intervention. This said, how relevant is this study 
from a mathematics education perspective?

It could be argued that the study is narrow in its scope 
and deals with only a very small fraction of the challenges 
faced by educators in rational number teaching. Moreover, 
the targeted concept does not have a central place in the 
mathematics curriculum–in fact, density is not even explic-
itly addressed in some curricula, such as the Greek and the 
Flemish ones (Van Dooren et  al. 2013). In addition, the 
intervention was restricted to imposing text-based infor-
mation on students and did not allow for teacher-student or 
student–student interaction in the classroom; clearly, this is 
not an optimal learning environment from the point of view 
of instruction. One could also ask, after asserting that con-
ceptual change is a difficult and slow process, is it possible 
to expect that such a short-term intervention could have a 
substantial impact on students’ conceptualization of num-
bers, or of the line?

The above concerns are not hypothetical ones. In fact, 
they were explicitly expressed by the reviewers of the man-
uscript reporting this particular study, who voiced (some 
of) the tensions between research that is more cognitively-
oriented and research that is more educationally-oriented. 
Moreover, all concerns are justifiable from the point of 
view of an educator who seeks to maximize the opportu-
nity for students to learn: Why should one spend valuable 
teaching time on a highly abstract and counter-intuitive 
concept, if it’s not among the curricular goals? And why 
should one restrict oneself to using a text? Had this inter-
vention allowed for more interaction in the classroom, for 
more feedback by the teacher, for the use of dynamic rep-
resentations via educational software, and so on, it would 
have arguably been more effective.

It should be acknowledged that such a short-term, exper-
imental intervention cannot be expected to have substantial 
or sustainable learning outcomes for students. What it can 

do, however, is to establish that the underlying principles 
can be of value to education, provided that they are used 
systematically and on a long-term basis. In the following 
I will attempt to draw some recommendations, which are 
compatible with conceptual change perspectives on learn-
ing, and could arguably be appreciated by mathematics 
educators as well. These recommendations are by no means 
exhaustive, but are related to the series of studies presented 
above and to the issues discussed.

Keep in mind that even mathematical ideas deemed 
“simple” are in fact highly complex and abstract Consider, 
for example, that fractions and decimals are introduced as 
“numbers” in instruction in a matter-of-fact way, although 
they differ in many important respects from what students 
recognize as “numbers”–for instance, they do not answer 
a “how many?” question. Substantial effort is required 
for students to acknowledge non-natural numbers as full-
fledged numbers, members of the same family as the natu-
ral numbers. This requires focusing on the deep similarities 
between natural and non-natural numbers, e.g., highlight-
ing similarities between counting and measuring, pointing 
to the fact that natural and non-natural numbers have mag-
nitudes, and that they are all placed on the (same) number 
line (see also Siegler 2016).

Take students’ prior knowledge into account This prin-
ciple is so widely acknowledged that it may seem trivial 
to repeat it here. However, there are different ways to take 
prior knowledge in account in instruction, and it is worth 
summarizing them.

First, the adverse effects of prior knowledge should 
be considered. According to Moss (2005), an important 
problem in rational number instruction is that not enough 
attention is paid to students’ struggle to assign meaning to 
rational numbers. More opportunities for students to exter-
nalize and negotiate their ideas about numbers need to be 
provided in the classroom, so that they become aware of 
them and that are able to evaluate and eventually revise 
them (Vosniadou et  al. 2001). It could be noted here that 
the use of not-typical tasks, such as the tasks about density 
used in our studies, can have a value in this respect.

Second, the positive role of prior knowledge should 
be considered. In fact, conceptual change perspectives on 
learning have been criticized on the grounds that they over-
emphasize the adverse effects of prior knowledge, neglect-
ing students’ productive ideas that can serve as a basis for 
further learning (Smith et al. 1993). The bridging strategy 
discussed in this article is but one example of constructive 
use of students’ ideas in instruction, aiming at inducing 
conceptual change. Another elaborate example in the area 
of fraction learning can be found in the work of Steffe and 
Olive (2010).

Third, when capitalizing on students’ prior knowledge, 
the long-term consequences should also be taken into 
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consideration. Indeed, not all aspects of prior knowledge 
are productive in the long run (Resnick 2006). A prominent 
example is the over-emphasis on the part-whole aspect of 
fraction, represented with the area model, which allows for 
students to employ their natural number knowledge but cre-
ates many difficulties in the long run (Moss 2005).

Pay attention to the analogies used in the classroom The 
use of analogies is supposed to bring within the grasp of 
students the essentially abstract mathematical ideas. How-
ever, great caution is necessary in the selection of analo-
gies, since it is possible they may stand in the way of fur-
ther learning. Consider, for example, that students’ early 
encounters with the “number track” might convey the idea 
that numbers are discrete (English 1997). Anticipating lat-
ter expansions of the meaning of the term number, one 
could consider starting with continuous number lines (that 
do not start at zero).

Furthermore, one should be aware that analogies are 
not necessarily transparent to students. Substantial support 
is required for students to perceive the intended relational 
similarities and to use them productively (Richland et  al. 
2007). Using bridging analogies (Clement 2008) is one way 
to support students that has been validated by science edu-
cation research. As indicated by our study, this approach 
could be fruitfully applied also to mathematics learning.

Invest in the cross-domain mapping between numerical 
and geometrical objects Cross-domain mapping between 
physical quantity and number is a fundamental process in 
the development of number concepts (Smith et  al. 2005; 
Moss 2005). Cross-domain mapping between numbers and 
the line goes beyond comparing concrete and abstract enti-
ties, towards a comparison between abstract entities that 
has been instrumental in the historical development of the 
number concept. Purposeful, long-term investment in this 
mapping in instruction might foster students’ conceptual-
ization of numbers as individual entities, invariant under 
different symbolic representations; and non-natural num-
bers as members of the same category as natural numbers 
(see also Kilpatrick et al. 2001).

For these recommendations to be truly useful for educa-
tors, further research is necessary focusing on the develop-
ment, assessment, and implementation of curricular materi-
als that build on these ideas. This kind of research lies in 
the intersection of cognitive-developmental psychology 
and education and could be an example of a bridge between 
the two fields.
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