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BRIDGING THE GAP BETWEEN DISCRETENESS AND DENSITY

Xenia Vamvakoussi, Kostas Katsigiannis, & Stella Vosniadou

University of Athens, Greece

We conducted a short intervention study using expository texts with the purpose of
fostering secondary students’ understanding of the density of numbers. The
participants were 46 8" and 52 10" graders, who were administered a pre-test, then
an expository text, and last a post-test. The experimental group was exposed o
information about the infinity of numbers in an interval, and also to a ‘bridging
analogy’ between students’ initial conceptions of the segment, and the segment as a
dense array of points. The experimental group outperformed the control group, who
was exposed only to information about the infinity of numbers, and also provided
better explanations of their answers.

INTRODUCTION

In this paper we report a short intervention study that investigated the potential
instructional value of the number line in secondary school students’ understanding of
the density of numbers.

The property of density of rational and real numbers is described as the possibility to
always find at least one number between any two numbers. This implies that, within a
dense set of numbers, between any two elements there are infinitely many others and
that no element has a (unique) successor. It is amply documented that understanding
density is difficult for students at various levels of instruction (e.g. Lehtinen,
Merenluoto, & Kasanen, 1997; Neumann, 1998; Tirosh, et al., 1999). In line with
prior research, in previous work (Vamvakoussi & Vosniadou, 2004, 2007) we found
that secondary students answered frequently that there is a finite number of numbers
in intervals defined by rational numbers. In addition, our findings showed that the
symbolic representation of the numbers defining the interval had a significant effect
on students’ responses. More specifically, students were very reluctant to accept that
there can be decimals between fractions and vice versa; they also treated integers,
decimals and fractions differently with respect to the number of intermediate
numbers, for instance a student might answer that there are infinitely many
intermediates between decimals, but a finite number of intermediates between
fractions. These findings suggest that, in this context, students treated different
symbolic representations of numbers as if they were different numbers, indicating a
view of the rational numbers set as consisting of different, unrelated ‘sets’ (i.e.
integers, decimals, fractions).

The number line is grounded on the analogy “numbers are points on the line”. As
such, it calls for a re-conceptualization for numbers, which might arguably help
students conceive of rational numbers as individual entities, and also facilitate their

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 5, pp. 273-280. Thessaloniki, Greece: PME.
5-273



Vamvakoussi, Katsigiannis, Vosniadou

understanding that, for instance, 0.5 and 1/2 are interchangeable representations of
the same number, rather than different numbers, since they correspond to the same
point. This could promote students’ understanding of rational (and real) numbers as a
unified number system (Kilpatrick et al., 2001). In addition, being a continuous
representation itself, the number line could (in principle) be used to confront
students’ belief that numbers are discrete in nature. From a historical point of view,
various descriptions of density emerged in mathematicians’ attempts to capture the
characteristic properties of the geometrical line, far before the emergence of any
notion of the arithmetic continuum (e.g. Bell, 2005; Klein, 1968). In a pilot study
(Vamvakoussi & Chatzimanolis, 2008) we found that secondary school students
(grades 7" _11™) were more apt to accept the infinity of points on a segment, than the
infinity of intermediate numbers in an interval.

However, the number line is a highly abstract analog itself, which requires from
students to coordinate their understandings coming of two different domains, namely
the domain of number and that of geometrical magnitudes, and in addition introduces
a number of new conventions to be learned (English, 1993).

Lakoff and Nufiez (2000), make a sharp distinction between the notion of the ‘holistic
line’, which can be conceptualized as the trace of a moving object (e.g. the pencil.
when it does not leave the paper) and is continuous in an everyday sense, and the
notion of the line as a set of points, which they characterize as a mathematically
elaborated metaphor of the line. They argue that these are two conflicting images of
the line, and that the fact that students are not aware of this conflict contributes to
their difficulty in interpreting the number line. Moreover, they argue that the number-
points correspondence is far from being transparent to students.

Dealing with the geometrical line per se presents students with difficulties, since they
may not distinguish between the abstract, geometrical line and its physical
representations, such as a line drawn by a pencil on a piece of paper bearing features
such as width, which is not supposed to belong to its idealized counterpar
(Fischbein, 1987). Such considerations may also interfere with students’
understanding about the number of points of a segment. More specifically.
conceptions of points as material spots are at odds with the infinite amount of poinis
on a line segment. Such conceptions may underlie students’ belief that longss
segments have more points (Fischbein, 1987). Reviewing the related literaturs.
Sbaragli (2006) points to the conception of a segment as “a necklace of beads”, pu
the one immediately next to the other, which seems to underlie many secondas
students’ descriptions of the structure of the segment.

Students’ early experiences with the number line at the elementary school should als:
be taken into consideration. Quoting Dufour-Janvier, Bednarz, and Belanger (1987
English (1993) points out that students tend to see the number line as a series of
‘stepping stones’ with an empty space in between, commenting that “his ma=
explain why so many secondary students say that there is no numbers, or at the maos
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one, between itwo whole numbers” (p. 24). Another common metaphor for the
number line, namely that of the ruler (e.g. Doritou & Gray, 2007) may also convey
the idea that the number of numbers in an interval is finite.

Findings from our pilot study were compatible with the above considerations. More
specifically, our participants described the geometrical line as a real-world object that
gets thicker if magnified; or, given the possibility of unlimited magnification, they
described the segment as consisting of points, the one immediately next to the other.
Interestingly, the latter description was offered also by students who had consistently
answered that there are infinitely many points on a segment. We took this to be an
indication that, from the student’ point of view, the ‘infinity many intermediates’
aspect of density does not necessarily imply its ‘no successor’ aspect. This
assumption is in line with findings showing that students believe that, for instance,
2.9999... is immediately before 3, i.e. such number in principle exists, albeit it can
not be precisely defined (e.g. Lehtinen et al., 1997).

The question rises, how can the gap between the segment as conceived by students
and the segment as a dense array of points be bridged? We drew on the ‘bridging
analogy’ approach, developed by Clement and his colleagues (see, for example,
Clement, 1993). This approach involves the interpolation, between students’ initial
understanding of a situation and the intended scientific idea, of one or more
intermediate anchoring situations, expected to trigger a correct intuition, i.e. one that
can be developed toward understanding the target situation. We devised the “rubber
line” anchor: “The line is like an imaginary rubber band that never breaks, no matter
how much it may be stretched”. This analogy is (partially) grounded on students’
experience with a real world object and it aims at conveying the idea that no matter
how close two points seem to be, there are always more points to be found in
between, by stretching the rubber line. The ‘rubber line” is compatible with students’
conceptions of the geometrical line, which lead them to believe that there will
=ventually be two successive points, but explicitly contradicts this expectation.

We designed a short, text -based intervention with the purpose of investigating the
zdded value of this approach in students’ understanding of the denseness of points
znd numbers on a segment and in an interval, respectively. We assumed that students
=xposed to explicit information about the infinity of numbers in an interval would
‘mprove their performance in similar tasks. However, we hypothesized that students
=xposed to the ‘rubber line’ analogy would perform better in items related to the ‘no
successor’ aspect of density and would provide better explanations for their answers.

METHOD
Participants.

The participants were 46 8" and 52 10™ graders, from 4 classes of the same school in
2 suburbs of Athens.
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Materials.

We constructed two texts (Ting, Tre)- Tine reminded students that all numbers can e
placed on the number line. Then it referred to 0 and 1 on the number line and evok=s
the notion of ‘space’ between them. It provided the correct answer (“there a==
infinitely many numbers between 0 and 17), accompanied with several examples. The
first part of Tr; was identical to Tryr. In its second part, the ‘rubber line’ anchor was
employed to explain how it is possible for two points to ‘look’ as if they wers
successive, and yet have infinitely many points in between. TrL concluded o
emphasizing the numbers-points correspondence and the implication that there ar=

infinitely many numbers in any interval.

We designed two questionnaires as pre- and post-tests. They had 9 forced-choics
items in common, focusing on the infinity of numbers in an interval and the infinis
of points on a straight segment (‘infinity items’). The post-test included 5 addition=!
items, asking students to evaluate a statement about the existence of two successive
numbers, and to justify their answer (‘no successor’ items).

Procedure.

The students were administered a) the pre-test, b) the expository text, and c) the pos:-
test. Students in the same class received the same type of text. The procedure lasi=c
45 minutes.

RESULTS

Students’ mean performance in the common items of the pre- and the post-test was
computed by scoring the “Finite number” answer as 1 and the “Infinitely many

answer as 2 (see Table 1).

Text type N Pre-test Post-test
Mean S.D. Mean S.D.
8% grade Tine 25 1227 188  1.640  .291
Tt 21 1302 298 1651 332
10™ grade i 25 1.351 337 1782 237
TFre 27 1.391 394  1.848 239

Table 1: Mean scores in the pre- and post-test, as a function of grade and text-type.

No significant performance differences between the two age groups, or between ==
two text type conditions within grade, were found before the intervention (tested wits
Mann-Whitney U test).

Students’ performance in the ‘infinity” items increased after the intervention (Tabiz
1). A Wilcoxon signed ranks test, comparing students’ mean performance betwes=
the pre- and the post-test, within grade and text-type condition, showed that th

difference was significant, for all groups. More specifically, 8™ graders’ performes
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significantly better under the T condition, z= -3.920, p<.001, and also the Tgg
condition, z=-3.861, p<.001. Similarly for 10" graders, under the T condition, z= -
3.374, p<.001, and the Ty condition, z=-3.895, p<.0001.

No significant differences in students’ performance in these items’ were found
between the two text-type conditions, for any of the grades (tested with Mann-
Whitney U test).

Finally, a Mann-Whitney U test comparing 8" and 10" graders’ performance in the
post-test showed a significant difference, z=-3.756, p<.001, in favour of 10™ graders.

Students’ responses in the additional, ‘no successor’ items of the post-test were
categorized as incorrect, partially correct and correct and were scored as 1, 2, and 3,
respectively, by two independent scorers (mean scores are presented in Table 2). For
a student to be credited with a correct response, she had to make a correct choice, i.e.
deny the possibility of the two given numbers (or points) to be successive and also
present a principle-based explanation. A response was categorized as ‘partially
correct” when the student made the correct choice, but offered no explanation (most
typical case), or came up with a counter-example without referring to a more general
principle. So for example, a correct choice accompanied with the explanation “/f is
not necessary for 2.002 to be immediately after 2.001. Take for example 2.0015 or
2.0012.” was scored by 2, whereas a correct choice accompanied with the
explanation “Between 3/7 and 4/7 there are infinitely many numbers, so we can
always find a number closer to 3/7” was scored by 3.

‘No successor’

Text type N items
Mean  S.D.
8" grade Tinr 25 1.544 743
T 21 1.968  .852
10™ grade T 25 2.088 698
Tre 27 2467 716

Table 2: Mean scores in the additional items of the post-test.

A Mann-Whitney U test comparing students’ mean performance between the Tpyp
and Tg. conditions, within grade, showed significant difference in the case of 10™
graders, z= -2.159, p<.05.

The added value of the Ty became clearer when we looked at the number of
incorrect responses in the ‘successor items’ of the post-test. As can be seen in Table
3, students not exposed to the ‘rubber line’ text were far more often found to deem at
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least one pair of numbers (or points) successive, than the Try students. It is
interesting to note that, in this respect, the Tgr. 8™ graders outperformed the older
students who were not exposed to the rubber-line text.

Incorrect answers

Grade ) ) TirE TrL Total
in the ‘successor items’

8" None 6(24%)  12(57.1%) 18 (100%)
At least one 19 (76%) 9(42.9%) 28 (100%)

Total 25 (100%)  21(100%) 46 (100%)

None 8 (32%) 18 (66.7%) 26 (100%)

At least one 17 (68%) 9(33.3%) 26 (100%)

Total 25(100%) 27 (100%) 52 (100%)

Table 3: Frequencies and percents of students who did or did not make a mistake in
the ‘no successor items’, as a function of grade and text-type.

Table 4 presents a categorization of students based on the number of correct answers
they gave in the 5 ‘no successor’ items. It can be noticed that students exposed to the
‘rubber line’ text provided more often elaborated explanations than their T fellow
students, within both age groups.

Number of correct answers in the 5 ‘no successor’ items

Grade Text type Oorl 2o0r3 4or5 Total
8" Tine 17 (68%) 5(20%) 3 (12%) 25 (100%)
Tre 9 (42.9%) 5(23.8%) 7(33.3%)  21(100%)
Total 37 (56.5%) 15(22.7%) 14(21.2%) 46 (100%)
10% T 12 (48%) 3 (12%) 10 (40%) 25 (100%)
Tre 6 (22.2%) 5(18.5%) 16 (59.2%) 27 (100%)
Total 25(33.8%) 18 (24.3%) 31(41.8%) 52(100%)

Table 4: Categorization of students based on the number of correct answers in the ‘no
successor’ items of the post-test, as a function of grade and text-type.

We note that students exposed to the ‘rubber line’ text employed this information,
and the numbers-points correspondence in general, in justifying their answers (see
Examples 1 and 2).

Example 1. (Two points cannot be found the one immediately next to the other)
“Because you keep stretching the line and you find that there are more poinis - this
process does not end.”
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Example 2. (2.002 cannot be the successor of 2.001) “Because if you place them on
the number line, there are infinitely many points between these numbers, and
therefore infinitely many other numbers”.

CONCLUSIONS- DISCUSSION

Our findings showed that providing information via an expository text about the
infinity of numbers in a specific interval (i.e. the one defined by 0 and 1) helped
students improve their performance in similar tasks, under all conditions. Tenth
graders profited in general more from this short intervention than the younger
students, since their performance did not differ significantly before the intervention,
but they performed significantly better afterwards. This finding can be attributed to
the fact that older students were more apt to extract information provided by the texts
and connect it to their existing knowledge, than the younger ones.

The added value of the ‘rubber line’ anchor manifested in students’ responses in the
additional items of the post-test, which focused on the ‘no successor’ aspect of
density. Based on findings from our pilot study (Vamvakoussi & Chatzimanolis,
2008), we took this aspect to be more difficult for students, than the ‘infinitely many
intermediates’ aspect of density and we addressed it in geometrical context, bridging
students’ conceptions of the segment and its relation with points and the notion of a
segment as a dense array of points via the ‘rubber line’ anchor. We also emphasized
the numbers-points correspondence, with the purpose to facilitate students to transfer
the information about the denseness of points to the domain of numbers. Our results
showed that both 8" and 10™ graders profited of this approach, since they were more
consistent in denying the possibility of two numbers or points to be successive, and
were also more apt to provide explanations, than their fellow students who were
exposed only to information about the infinity of numbers in an interval.

Keeping in mind that, besides being short, the intervention was rather conservative in
the sense that it was text-based and did not allow for any interaction in the classroom,
our findings suggest that purposeful, long-term use of the number line in instruction
maybe valuable, provided that it is accompanied with adequate explanations that
bridge the gap between students’ conceptions of the number line and the intended
mathematical meanings.
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